ترغب بنشر مسار تعليمي؟ اضغط هنا

89 - Parveen Kumar 2015
This is continuation of our programme to search for the elusive radio-quiet BL Lacs, by carrying out a systematic search for intranight optical variability (INOV) in a subset of `weak-line quasars which are already designated as `high-confidence BL L ac candidate and are also known to be radio-quiet. For 6 such radio-quiet weak-line quasars (RQWLQs), we present here new INOV observations taken in 11 sessions of duration >3 hours each. Combining these data with our previously published INOV monitoring of RQWLQs in 19 sessions yields INOV observations for a set of 15 RQWLQs monitored in 30 sessions, each lasting more than 3 hours. The 30 differential light curves, thus obtained for the 15 RQWLQs, were subjected to a statistical analysis using the F-test, and the deduced INOV characteristics of the RQWLQs then compared with those published recently for several prominent AGN classes, also applying the F-test. From our existing INOV observations, there is a hint that RQWLQs in our sample show a significantly higher INOV duty cycle than radio-quiet quasars and radio lobe-dominated quasars. Two sessions when we have detected strong (blazar-like) INOV for RQWLQs are pointed out, and these two RQWLQs are therefore the best known candidates for radio-quiet BL Lacs, deserving to be pursued. For a proper comparison with the INOV properties already established for (brighter) members of several prominent classes of AGN, a factor of 2-3 improvement in the INOV detection threshold for the RQWLQs is needed and it would be very interesting to check if that would yield a significantly higher estimate for INOV duty cycle than is found here.
69 - Parveen Kumar , K. Shahi 2009
The structural and electrical characterizations of mechanically-milled (MM) amorphous fast ionic conductors (a-FICs), viz. xAgI (100-x)[0.67 Ag_2 O-0.33V_2O_5] (x = 40, 50, 55 and 70) have been reported. The amorphisation is restricted only to the co mpositions which are well within the glass forming region and all samples are found to be highly agglomerated and X-ray amorphous in nature. The frequency dependent ac conductivity, sigma(omega), of the amorphous samples investigated in the frequency range 5Hz -13 MHz and temperature range 100- 350 K shows a dc conductivity regime at low frequencies and a dispersive regime at higher frequencies. The spectra can be described by the Jonscher power law (JPL), simga(omega) = sigma_dc +A(T) omega_n. However, the values sigma_dc (T) and A(T) both show two distinct Arrhenius regions and n (< 1) is found to be temperature dependent, i.e., decreasing with increasing temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا