ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron den sity under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated xtallography (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average Rfree factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.
Atomic-accuracy structure prediction of macromolecules is a long-sought goal of computational biophysics. Accurate modeling should be achievable by optimizing a physically realistic energy function but is presently precluded by incomplete sampling of a biopolymers many degrees of freedom. We present herein a working hypothesis, called the stepwise ansatz, for recursively constructing well-packed atomic-detail models in small steps, enumerating several million conformations for each monomer and covering all build-up paths. By implementing the strategy in Rosetta and making use of high-performance computing, we provide first tests of this hypothesis on a benchmark of fifteen RNA loop modeling problems drawn from riboswitches, ribozymes, and the ribosome, including ten cases that were not solvable by prior knowledge based modeling approaches. For each loop problem, this deterministic stepwise assembly (SWA) method either reaches atomic accuracy or exposes flaws in Rosettas all-atom energy function, indicating the resolution of the conformational sampling bottleneck. To our knowledge, SWA is the first enumerative, ab initio build-up method to systematically outperform existing Monte Carlo and knowledge-based methods for 3D structure prediction. As a rigorous experimental test, we have applied SWA to a small RNA motif of previously unknown structure, the C7.2 tetraloop/tetraloop-receptor, and stringently tested this blind prediction with nucleotide-resolution structure mapping data.
No existing algorithm can start with arbitrary RNA sequences and return the precise, three-dimensional structures that ensures their biological function. This chapter outlines current algorithms for automated RNA structure prediction (including our o wn FARNA-FARFAR), highlights their successes, and dissects their limitations, using a tetraloop and the sarcin/ricin motif as examples. The barriers to future advances are considered in light of three particular challenges: improving computational sampling, reducing reliance on experimentally solved structures, and avoiding coarse-grained representations of atomic-level interactions. To help meet these challenges and better understand the current state of the field, we propose an ongoing community-wide CASP-style experiment for evaluating the performance of current structure prediction algorithms.
In this paper we introduce a diagnostic for measuring the quantum-classical difference for open quantum systems, which is the normalized size of the quantum terms in the Master equation for Wigner function evolution. For a driven Duffing oscillator, this measure shows remarkably precise scaling over long time-scales with the parameter $zeta_0=hbar^2/D$. We also see that, independent of $zeta_0$ the dynamics follows a similar pattern. For small $zeta_0$ all of our curves collapses to essentially a single curve when scaled by the maximum value of the quantum-classical difference. In both limits of large and small $zeta_0$ we see a saturation effect in the size of the quantum-classical difference; that is, the instantaneous difference between quantum and classical evolutions cannot be either too small or too large.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا