ترغب بنشر مسار تعليمي؟ اضغط هنا

The problem of constructing pseudorandom generators that fool halfspaces has been studied intensively in recent times. For fooling halfspaces over the hypercube with polynomially small error, the best construction known requires seed-length O(log^2 n ) (MekaZ13). Getting the seed-length down to O(log(n)) is a natural challenge in its own right, which needs to be overcome in order to derandomize RL. In this work we make progress towards this goal by obtaining near-optimal generators for two important special cases: 1) We give a near optimal derandomization of the Chernoff bound for independent, uniformly random bits. Specifically, we show how to generate a x in {1,-1}^n using $tilde{O}(log (n/epsilon))$ random bits such that for any unit vector u, <u,x> matches the sub-Gaussian tail behaviour predicted by the Chernoff bound up to error eps. 2) We construct a generator which fools halfspaces with {0,1,-1} coefficients with error eps with a seed-length of $tilde{O}(log(n/epsilon))$. This includes the important special case of majorities. In both cases, the best previous results required seed-length of $O(log n + log^2(1/epsilon))$. Technically, our work combines new Fourier-analytic tools with the iterative dimension reduction techniques and the gradually increasing independence paradigm of previous works (KaneMN11, CelisRSW13, GopalanMRTV12).
The long code is a central tool in hardness of approximation, especially in questions related to the unique games conjecture. We construct a new code that is exponentially more efficient, but can still be used in many of these applications. Using the new code we obtain exponential improvements over several known results, including the following: 1. For any eps > 0, we show the existence of an n vertex graph G where every set of o(n) vertices has expansion 1 - eps, but Gs adjacency matrix has more than exp(log^delta n) eigenvalues larger than 1 - eps, where delta depends only on eps. This answers an open question of Arora, Barak and Steurer (FOCS 2010) who asked whether one can improve over the noise graph on the Boolean hypercube that has poly(log n) such eigenvalues. 2. A gadget that reduces unique games instances with linear constraints modulo K into instances with alphabet k with a blowup of K^polylog(K), improving over the previously known gadget with blowup of 2^K. 3. An n variable integrality gap for Unique Games that that survives exp(poly(log log n)) rounds of the SDP + Sherali Adams hierarchy, improving on the previously known bound of poly(log log n). We show a connection between the local testability of linear codes and small set expansion in certain related Cayley graphs, and use this connection to derandomize the noise graph on the Boolean hypercube.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا