ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal transport coefficients are independent of the specific microscopic expression for the energy density and current from which they can be derived through the Green-Kubo formula. We discuss this independence in terms of a kind of gauge invarianc e resulting from energy conservation and extensivity, and demonstrate it numerically for a Lennard-Jones fluid, where different forms of the microscopic energy density lead to different time correlation functions for the heat flux, all of them, however, resulting in the same value for the thermal conductivity.
Quantum simulation methods based on density-functional theory are currently deemed unfit to cope with atomic heat transport within the Green-Kubo formalism, because quantum-mechanical energy densities and currents are inherently ill-defined at the at omic scale. We show that, while this difficulty would also affect classical simulations, thermal conductivity is indeed insensitive to such ill-definedness by virtue of a sort of gauge invariance resulting from energy extensivity and conservation. Based on these findings, we derive an expression for the adiabatic energy flux from density-functional theory, which allows heat transport to be simulated using ab-initio equilibrium molecular dynamics. Our methodology is demonstrated by comparing its predictions with those of classical equilibrium and ab-initio non-equilibrium (Muller-Plathe) simulations for a liquid-Argon model, and finally applied to heavy water at ambient conditions.
Hybrid AMX3 perovskites (A=Cs, CH3NH3; M=Sn, Pb; X=halide) have revolutionized the scenario of emerging photovoltaic technologies. Introduced in 2009 by Kojima et al., a rapid evolution very recently led to 15% efficient solar cells. CH3NH3PbI3 has s o far dominated the field, while the similar CH3NH3SnI3 has not been explored for photovoltaic applications, despite the reduced band-gap. Replacement of Pb by the more environment-friendly Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 properties are discussed in light of their exploitation for solar cells, and found to be entirely due to relativistic effects.
We calculate the linear and non-linear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electr onic polarization as a function of applied finite electric field - an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hyper-susceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry - usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hyper-susceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wavefunction affect the accuracy of the calculated susceptibilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا