ترغب بنشر مسار تعليمي؟ اضغط هنا

We study vortex solutions in Abelian Chern-Simons-Higgs theories with visible and hidden sectors. We first consider the case in which the two sectors are connected through a BF-like gauge mixing term with no explicit interaction between the the two s calars. Since first order Bogomolny equations do not exist in this case, we derive the second order field equations. We then proceed to an ${cal N}=2$ supersymmetric extension including a Higgs portal mixing among the visible and hidden charged scalars. As expected, Bogomolnyi equations do exist in this case and we study their string-like solutions numerically.
We study vortex solutions in a theory with dynamics governed by two weakly coupled Abelian Higgs models, describing a hidden sector and a visible sector. We analyze the radial dependence of the axially symmetric solutions constructed numerically and discuss the stability of vortex configurations for different values of the model parameters, studying in detail vortex decay into lower energy configurations. We find that even in a weak coupling regime vortex solutions strongly depend on the parameters of both the visible and hidden sectors. We also discuss on qualitative grounds possible implications of the existence of a hidden sector in connection with superconductivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا