ترغب بنشر مسار تعليمي؟ اضغط هنا

In this letter, we study how coupling between AuNPs and ZnO thin films affects their emission properties. The emission intensity of ZnO thin films changes when Al2O3 spacer layer of different thickness are included in ZnO/Au films, consistent with th eoretical predictions. The emission properties are also controlled using the polarization of the excitation source. Emission properties depended on the polarization of the excitation source because of the surface plasmon resonance of AuNPs. The photoluminescence anisotropy of these systems shows that enhanced photoluminescence can be achieved through coupling of the emission from ZnO with the surface plasmon resonance of AuNPs.
Physically parallel to ferroelectric morphotropic phase boundary, a phase boundary separating two ferromagnetic phase of different crystallographic symmetries was found in TbxDy1-xCo2. High-resolution synchrotron XRD has been carried out to offer exp erimental evidence for TbxDy1-xCo2. It has been proved that TbxDy1-xCo2 (0.6<x<0.7) is a morphotropic phase boundary and that the crystal structures of tetragonal (x<0.6) and rhombohedral (x>0.7) phase is distorted from a Laves Phase. Here, a first principles calculation provides a theoretical explanation on the origin of MBP in TbxDy1-xCo2 and is also provided for the question of why MPB occurs in TbxDy1-xCo2 alloys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا