ترغب بنشر مسار تعليمي؟ اضغط هنا

[abridged] We quantify the morphological evolution of z~0 massive galaxies ($M*/M_odotsim10^{11}$) from z~3 in the 5 CANDELS fields. The progenitors are selected using abundance matching techniques to account for the mass growth. The morphologies str ongly evolve from z~3. At z<1, the population matches the massive end of the Hubble sequence, with 30% of spheroids, 50% of galaxies with equally dominant disk and bulge components and 20% of disks. At z~2-3 there is a majority of irregular systems (~60-70%) with still 30% of spheroids. We then analyze the SFRs, gas fractions and structural properties for the different morphologies independently. Our results suggest two distinct channels for the growth of bulges in massive galaxies. Around 30-40% were already bulges at z~2.5, with low average SFRs and gas-fractions (10-15%), high Sersic indices (n>3-4) and small effective radii ($R_e$~1 kpc) pointing towards an early formation through gas-rich mergers or VDI. Between z~ 2.5 and z~0, they rapidly increase their size by a factor of ~4-5, become all passive but their global morphology remains unaltered. The structural evolution is independent of the gas fractions, suggesting that it is driven by ex-situ events. The remaining 60% experience a gradual morphological transformation, from clumpy disks to more regular bulge+disks systems, essentially happening at z>1. It results in the growth of a significant bulge component (n~3) for 2/3 of the systems possibly through the migration of clumps while the remaining 1/3 keeps a rather small bulge (n~1.5-2). The transition phase between disturbed and relaxed systems and the emergence of the bulge is correlated with a decrease of the star formation activity and the gas fractions. The growth of the effective radii scales roughly with $H(z)^{-1}$ and it is therefore consistent with the expected growth of disks in galaxy haloes.
(Abridged) We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out with GTC/OSIRIS. SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field (130 arcmin^2) at wavelengths 500 to 950 nm and using 24 contiguous medium-band filters (spectral resolution R 50). The data reach 26.5 mag (>3-sigma level) with sub-arcsec seeing in all bands. SHARDS main goal is obtaining accurate physical properties of interm- and high-z galaxies using well-sampled optical SEDs with sufficient spectral resolution to measure absorption and emission features. Among the different populations of high-z galaxies, SHARDS principal targets are massive quiescent galaxies at z>1. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures applied to the GTC/OSIRIS data. We present science demonstration results about the detection and study of emission-line galaxies (star-forming and AGN) at z=0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies at 1.0<z<1.4. We discuss on the improvements introduced by the SHARDS dataset in the analysis of their SFH and stellar properties. We discuss the systematics arising from the use of different stellar population libraries. We find that the UV-to-MIR SEDs of the massive quiescent galaxies at z=1.0-1.5 are well described by an exponential decaying SFH with scale tau=100-200 Myr, age 1.5-2.0 Gyr, solar or slightly sub-solar metallicity, and moderate extinction, A(V)~0.5 mag. We also find that galaxies with masses above M* are typically older than lighter galaxies, as expected in a downsizing scenario of galaxy formation. This trend is, however, model dependent, i.e., it is significantly more evident in the results obtained with some stellar population synthesis libraries and almost absent in others.
112 - Guillermo Barro 2012
We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragala ctic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.
SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg(UV) or D(4000) indices; (3) measure their redshift with an accuracy Delta(z)/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).
223 - Guillermo Barro 2011
Based on the ultraviolet to far-infrared photometry already compiled and presented in a companion paper (Barro et al. 2011a, Paper I), we present a detailed SED analysis of nearly 80,000 IRAC 3.6+4.5 micron selected galaxies in the Extended Groth Str ip. We estimate photometric redshifts, stellar masses, and star formation rates separately for each galaxy in this large sample. The catalog includes 76,936 sources with [3.6] < 23.75 (85% completeness level of the IRAC survey) over 0.48 square degrees. The typical photometric redshift accuracy is Delta z/(1+z)=0.034, with a catastrophic outlier fraction of just 2%. We quantify the systematics introduced by the use of different stellar population synthesis libraries and IMFs in the calculation of stellar masses. We find systematic offsets ranging from 0.1 to 0.4 dex, with a typical scatter of 0.3 dex. We also provide UV- and IR-based SFRs for all sample galaxies, based on several sets of dust emission templates and SFR indicators. We evaluate the systematic differences and goodness of the different SFR estimations using the deep FIDEL 70 micron data available in the EGS. Typical random uncertainties of the IR-bases SFRs are a factor of two, with non-negligible systematic effects at z$gtrsim$1.5 observed when only MIPS 24 micron data is available. All data products (SEDs, postage stamps from imaging data, and different estimations of the photometric redshifts, stellar masses, and SFRs of each galaxy) described in this and the companion paper are publicly available, and they can be accessed through our the web-interface utility Rainbow-navigator
We use Spitzer MIPS data from the FIDEL Legacy Project in the Extended Groth Strip to analyze the stellar mass assembly of massive (M>10^11 M_sun) galaxies at z<2 as a function of structural parameters. We find 24 micron emission for more than 85% of the massive galaxies morphologically classified as disks, and for more than 57% of the massive systems morphologically classified as spheroids at any redshift, with about 8% of sources harboring a bright X-ray and/or infrared emitting AGN. More noticeably, 60% of all compact massive galaxies at z=1-2 are detected at 24 micron, even when rest-frame optical colors reveal that they are dead and evolving passively. For spheroid-like galaxies at a given stellar mass, the sizes of MIPS non-detections are smaller by a factor of 1.2 in comparison with IR-bright sources. We find that disk-like massive galaxies present specific SFRs ranging from 0.04 to 0.2 Gyr^-1 at z<1 (SFRs ranging from 1 to 10 M_sun/yr), typically a factor of 3-6 higher than massive spheroid-like objects in the same redshift range. At z>1, and more pronouncedly at z>1.3, the median specific SFRs of the disks and spheroids detected by MIPS are very similar, ranging from 0.1 to 1 Gyr^-1 (SFR=10-200 M_sun/yr). We estimate that massive spheroid-like galaxies may have doubled (at the most) their stellar mass from star-forming events at z<2: less than 20% mass increase at 1.7<z<2.0, up to 40% more at 1.1<z<1.7, and less than 20% additional increase at z<1. Disk-like galaxies may have tripled (at the most) their stellar mass at z<2 from star formation alone: up to 40% mass increase at 1.7<z<2.0, and less than 180% additional increase below z=1.7 occurred at a steady rate.
Using a sample of ~28,000 sources selected at 3.6-4.5 microns with Spitzer observations of the HDF-N, the CDF-S, and the Lockman Hole (surveyed area: ~664 arcmin^2), we study the evolution of the stellar mass content of the Universe at 0<z<4. We calc ulate stellar masses and photometric redshifts, based on ~2,000 templates built with stellar and dust emission models fitting the UV-to-MIR SEDs of galaxies with spectroscopic redshifts. We estimate stellar mass functions for different redshift intervals. We find that 50% of the local stellar mass density was assembled at 0<z<1 (average SFR:0.048 M_sun/yr/Mpc^3), and at least another 40% at 1<z<4 (average SFR: 0.074 M_sun/yr/Mpc^3). Our results confirm and quantify the ``downsizing scenario of galaxy formation. The most massive galaxies (M>10^12.0 M_sun) assembled the bulk of their stellar content rapidly (in 1-2 Gyr) beyond z~3 in very intense star formation events (producing high specific SFRs). Galaxies with 10^11.5<M/M_sun<10^12.0 assembled half of their stellar mass before z~1.5, and more than 90% of their mass was already in place at z~0.6. Galaxies with M<10^11.5 M_sun evolved more slowly (presenting smaller specific SFRs), assembling half of their stellar mass below z~1. About 40% of the local stellar mass density of 10^9.0<M/M_sun<10^11.0 galaxies was assembled below z~0.4, most probably through accretion of small satellites producing little star formation. The cosmic stellar mass density at z>2.5 is dominated by optically faint (R>25) red galaxies (Distant Red Galaxies or BzK sources) which account for ~30% of the global population of galaxies, but contribute at least 60% to the cosmic stellar mass density. Bluer galaxies (e.g., Lyman Break Galaxies) are more numerous but less massive, contributing less than 50% to the global stellar mass density at high redshift.
We present the results of an Halpha near-infrared narrow-band survey searching for star-forming galaxies at redshift z=0.84. This work is an extension of our previous narrow-band studies in the optical at lower redshifts. After removal of stars and r edshift interlopers (using spectroscopic and photometric redshifts), we build a complete sample of 165 Halpha emitters in the Extended Groth strip and GOODS-N fields with L(Halpha)>10^41 erg/s. We compute the Halpha luminosity function at z=0.84 after corrections for [NII] flux contamination, extinction, systematic errors, and incompleteness. Our sources present an average dust extinction of A(Halpha)=1.5 mag. Adopting Halpha as a surrogate for the instantaneous star formation rate (SFR), we measure a extinction-corrected SFR density of 0.17+-0.03 M_sun/yr/Mpc3. Combining this result to our prior measurements at z=0.02, 0.24, and 0.40, we derive an Halpha-based evolution of the SFR density proportional to (1+z)^beta with beta=3.8+-0.5. This evolution is consistent with that derived by other authors using different SFR tracers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا