ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. T he method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude ($sigma_8$). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes $M_r leq -20$). We obtain $hat{b} = 1.193 pm 0.074$ and $hat{sigma_8} = 0.862 pm 0.080$, for galaxy number density fluctuations in cells of a size of $30h^{-1}$Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.
The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies (LRG) of the Sloan Digital Sky Survey (SDSS). The final release (DR7) of the SDSS has been recently made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the 2dF redshift survey. We test the reliability of the detection of the acoustic peak at about 100 Mpc/h and the behaviour of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.
Measurements of clustering in large-scale imaging surveys that make use of photometric redshifts depend on the uncertainties in the redshift determination. We have used light-cone simulations to show how the deprojection method successfully recovers the real space correlation function when applied to mock photometric redshift surveys. We study how the errors in the redshift determination affect the quality of the recovered two-point correlation function. Considering the expected errors associated to the planned photometric redshift surveys, we conclude that this method provides information on the clustering of matter useful for the estimation of cosmological parameters that depend on the large scale distribution of galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا