ترغب بنشر مسار تعليمي؟ اضغط هنا

Location of non-stationary forced oscillation (FO) sources can be a challenging task, especially in cases under resonance condition with natural system modes, where the magnitudes of the oscillations could be greater in places far from the source. Th erefore, it is of interest to construct a global time-frequency (TF) representation (TFR) of the system, which can capture the oscillatory components present in the system. In this paper we develop a systematic methodology for frequency identification and component filtering of non-stationary power system forced oscillations (FO) based on multi-channel TFR. The frequencies of the oscillatory components are identified on the TF plane by applying a modified ridge estimation algorithm. Then, filtering of the components is carried out on the TF plane applying the anti-transform functions over the individual TFRs around the identified ridges. This step constitutes an initial stage for the application of the Dissipating Energy Flow (DEF) method used to locate FO sources. Besides, we compare three TF approaches: short-time Fourier transform (STFT), STFT-based synchrosqueezing transform (FSST) and second order FSST (FSST2). Simulated signals and signals from real operation are used to show that the proposed method provides a systematic framework for identification and filtering of power systems non-stationary forced oscillations.
Non-stationary forced oscillations (FOs) have been observed in power system operations. However, most detection methods assume that the frequency of FOs is stationary. In this paper, we present a methodology for the analysis of non-stationary FOs. Fi rstly, Fourier synchrosqueezing transform (FSST) is used to provide a concentrated time-frequency representation of the signals that allows identification and retrieval of non-stationary signal components. To continue, the Dissipating Energy Flow (DEF) method is applied to the extracted components to locate the source of forced oscillations. The methodology is tested using simulated as well as real PMU data. The results show that the proposed FSST-based signal decomposition provides a systematic framework for the application of DEF Method to non-stationary FOs.
In this paper, a self-adaptive contractive (SAC) algorithm is proposed for enhanced dynamic phasor estimation in the diverse operating conditions of modern power systems. At a high-level, the method is composed of three stages: parameter shifting, fi ltering and parameter unshifting. The goal of the first stage is to transform the input signal phasor so that it is approximately mapped to nominal conditions. The second stage provides estimates of the phasor, frequency, rate of change of frequency (ROCOF), damping and rate of change of damping (ROCOD) of the parameter shifted phasor by using a differentiator filter bank (DFB). The final stage recovers the original signal phasor parameters while rejecting misleading estimates. The most important features of the algorithm are that it offers convergence guarantees in a set of desired conditions, and also great harmonic rejection. Numerical examples, including the IEEE C37.118.1 standard tests with realistic noise levels, as well as fault conditions, validate the proposed algorithm.
In this article, we present a new model for a synchronous generator based on phasor measurement units (PMUs) data. The proposed sub-transient model allows to estimate the dynamic state variables as well as to calibrate model parameters. The motivatio n for this new model is to use more efficiently the PMU measurements which are becoming widely available in power grids. The concept of phasor derivative is applied, which not only includes the signal phase derivative but also its amplitude derivative. Applying known non-linear estimation techniques, we study the merits of this new model. In particular, we test robustness by considering a generator with different mechanical power controls.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا