ترغب بنشر مسار تعليمي؟ اضغط هنا

The ability to deterministically generate genuine multi-partite entanglement is fundamental for the advancement of quantum information science. We show that the interaction between entangled twin beams of light and an atomic ensemble under conditions for electromagnetically induced transparency leads to the generation of genuine hybrid tri-partite entanglement between the two input fields and the atomic ensemble. In such a configuration, the system is driven through dissipation to a steady state given by the hybrid entangled state. To show the presence of the genuine hybrid entanglement, we introduce a new approach to treat the atomic operators that makes it possible to show a violation of a tri-partite entanglement criterion based on the properties of the two optical fields and collective properties of the atomic ensemble. Additionally, we show that while each of the input optical fields does not exhibit single beam quadrature squeezing, as the fields propagate through the atomic medium their individual quadratures can become squeezed and in some cases oscillate between the presence and absence of squeezing. Finally, we propose a technique to characterize the tri-partite entanglement through joint measurements of the fields leaving the atomic medium, making such an approach experimentally accessible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا