ترغب بنشر مسار تعليمي؟ اضغط هنا

The PHENIX experiment has measured $phi$ meson production in $d$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y <2.2$ ($-2.2<y<-1.2$) in the transverse-momentum ($p_T$) range from 1--7 GeV/$c$, and at midrapidity $|y|<0.35$ in the $p_T$ range below 7 GeV/$c$. The $phi$ meson invariant yields and nuclear-modification factors as a function of $p_T$, rapidity, and centrality are reported. An enhancement of $phi$ meson production is observed in the Au-going direction, while suppression is seen in the $d$-going direction, and no modification is observed at midrapidity relative to the yield in $p$$+$$p$ collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.
The PHENIX collaboration presents here a concept for a detector at a future Electron Ion Collider (EIC). The EIC detector proposed here, referred to as ePHENIX, will have excellent performance for a broad range of exciting EIC physics measurements, p roviding powerful investigations not currently available that will dramatically advance our understanding of how quantum chromodynamics binds the proton and forms nuclear matter.
76 - Itzhak Tserruya 2012
Most recent PHENIX results on electromagnetic probes are presented including first preliminary results obtained with the Hadron Blind Detector (HBD) on e+e- invariant mass spectra from Au+Au collisions at sqrt(s_NN) = 200 GeV.
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has performed systematic measurements of phi meson production in the K+K- decay channel at midrapidity in p+p, d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV. Results are pre sented on the phi invariant yield and the nuclear modification factor R_AA for Au+Au and Cu+Cu, and R_dA for d+Au collisions, studied as a function of transverse momentum (1<p_T<7 GeV/c) and centrality. In central and mid-central Au+Au collisions, the R_AA of phi exhibits a suppression relative to expectations from binary scaled p+p results. The amount of suppression is smaller than that of the neutral pion and the eta meson in the intermediate p_T range (2--5 GeV/c); whereas at higher p_T the phi, pi^0, and eta show similar suppression. The baryon (protons and anti-protons) excess observed in central Au+Au collisions at intermediate p_T is not observed for the phi meson despite the similar mass of the proton and the phi. This suggests that the excess is linked to the number of constituent quarks rather than the hadron mass. The difference gradually disappears with decreasing centrality and for peripheral collisions the R_AA values for both particles are consistent with binary scaling. Cu+Cu collisions show the same yield and suppression as Au+Au collisions for the same number of N_part. The R_dA of phi shows no evidence for cold nuclear effects within uncertainties.
The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 < p_T <5 GeV/c is measured in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced yield above hadronic sources is observed. Treating the excess as internal
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rap idity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
105 - Hiroshi Masui 2008
One of the most striking results is the large elliptic flow ($v_2$) at RHIC. Detailed mass and transverse momentum dependence of elliptic flow are well described by ideal hydrodynamic calculations for $p_{mathrm{T}} < $ 1 GeV/c, and by parton coalesc ence/recombination picture for $p_{mathrm{T}} = 2 - 6$ GeV/c. The systematic error on $v_2$ is dominated by so-called non-flow effects, which is the correlation not originated from reaction plane. It is crucial to understand and reduce the systematic error from non-flow effects in order to understand the underlying collision dynamics. In this paper, we present the centrality dependence of $v_2$ with respect to the first harmonic event plane at ZDC-SMD ($v_2${ZDC-SMD}) in Au + Au collisions at $sqrt{s_{NN}}$ = 200 GeV. Large rapidity gap ($|Deltaeta| > 6$) between midrapidity and the ZDC could enable us to minimize possible non-flow contributions. We compare the results of $v_2${ZDC-SMD} with $v_2${BBC}, which is measured by event plane determined at $|eta| = 3.1 - 3.9$. Possible non-flow contributions in those results will be discussed.
The double helicity asymmetry in neutral pion production for p_T = 1 to 12 GeV/c has been measured with the PHENIX experiment in order to access the gluon spin contribution, Delta-G, to the proton spin. Measured asymmetries are consistent with zero, and at a theory scale of mu^2 = 4 GeV^2 give Delta-G^[0.02,0.3] = 0.1 to 0.2, with a constraint of -0.7 < Delta-G^[0.02,0.3] < 0.5 at Delta-chi^2 = 9 (~3 sigma) for our sampled gluon momentum fraction (x) range, 0.02 to 0.3. The results are obtained using predictions for our measured asymmetries generated from four representative fits to polarized deep inelastic scattering data. We also consider the dependence of the Delta-G constraint on the choice of theoretical scale, a dominant uncertainty in these predictions.
The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 G eV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A_LL are presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the gluon (x_g) with better statistical precision than our previous measurements at sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x_g < 0.4.
The PHENIX experiment has measured the suppression of semi-inclusive single high transverse momentum pi^0s in Au+Au collisions at sqrt(s_NN) = 200 GeV. The present understanding of this suppression is in terms of energy-loss of the parent (fragmentin g) parton in a dense color-charge medium. We have performed a quantitative comparison between various parton energy-loss models and our experimental data. The statistical point-to-point uncorrelated as well as correlated systematic uncertainties are taken into account in the comparison. We detail this methodology and the resulting constraint on the model parameters, such as the initial color-charge density dN^g/dy, the medium transport coefficient <q^hat>, or the initial energy-loss parameter epsilon_0. We find that high transverse momentum pi^0 suppression in Au+Au collisions has sufficient precision to constrain these model dependent parameters at the +/1 20%-25% (one standard deviation) level. These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا