ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulent properties of the quiet Sun represent the basic state of surface conditions, and a background for various processes of solar activity. Therefore understanding of properties and dynamics of this `basic state is important for investigation of more complex phenomena, formation and development of observed phenomena in the photosphere and atmosphere. For characterization of the turbulent properties we compare kinetic energy spectra on granular and sub-granular scales obtained from infrared TiO observations with the New Solar Telescope (Big Bear Solar Observatory) and from 3D radiative MHD numerical simulations (SolarBox code). We find that the numerical simulations require a high spatial resolution with 10 - 25 km grid-step in order to reproduce the inertial (Kolmogorov) turbulence range. The observational data require an averaging procedure to remove noise and potential instrumental artifacts. The resulting kinetic energy spectra show a good agreement between the simulations and observations, opening new perspectives for detailed joint analysis of more complex turbulent phenomena on the Sun, and possibly on other stars. In addition, using the simulations and observations we investigate effects of background magnetic field, which is concentrated in self-organized complicated structures in intergranular lanes, and find an increase of the small-scale turbulence energy and its decrease at larger scales due to magnetic field effects.
We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within indi vidual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band ha images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the NST data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m New Solar Telescope (NST) operating at the Big Bear Solar Observatory. The data set also includes NST off-band ha images collected through a Zeiss Lyot filter with a passband of 0.025 nm.
With the ever increasing influx of high resolution images of the solar surface obtained at a multitude of wavelengths, various processes occurring at small spatial scales have become a greater focus of our attention. Complex small-scale magnetic fiel ds have been reported that appear to have enough stored to heat the chromosphere. While significant progress has been made in understanding small-scale phenomena, many specifics remain elusive. We present here a detailed study of a single event of disappearance of a magnetic dipole and associated chromospheric activity. Based on New Solar Telescope H$alpha$ data and {it Hinode} photospheric line-of-sight magnetograms and Ca II H images we report the following. 1) Our analysis indicates that even very small dipoles (elements separated by about 0arcsec.5 or less) may reach the chromosphere and trigger non-negligible chromospheric activity. 2) Careful consideration of the magnetic environment where the new flux is deposited may shed light on the details of magnetic flux removal from the solar surface. We argue that the apparent collision and disappearance of two opposite polarity elements may not necessarily indicate their cancellation (i.e., reconnection, emergence of a U tube or submergence of $ Omega $ loops). In our case, the magnetic dipole disappeared by reconnecting with overlying large-scale inclined plage fields. 3) Bright points seen in off-band H$alpha$ images are very well-correlated with the Ca II H bright points, which in turn are co-spatial with G-band bright points. We further speculate that, in general, H$alpha$ bright points are expected be co-spatial with photospheric BPs, however, a direct comparison is needed to refine their relationship.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا