ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper represents a detailed theoretical study of the role of the longrange magnetic dipole-dipole interaction evidenced by the ferromagnetic resonance (FMR) spectra for the ordered arrays of cubic nanoparticles. We show that the size of the arra y essentially controls the stability of the system, allowing to suppress the intermittent low-field excitations starting from the arrays formed by 6x6 nanoparticles. Our numerical simulations allow to determine the threshold inter-particle distance (around 80 {div} 100 nm), after which the dipole-dipole interaction becomes negligible so that the FMR spectrum of the nanoparticle arrays becomes the same as the spectrum featured by a single nanoparticle. We also compare our simulations with experimental FMR-spectra of 24 Fe/Fe$_x$O$_y$-nanocubes irregularly placed on a substrate.
We report on theoretical investigation of the magnetization reversal in two-dimensional arrays of ferromagnetic nano-particles with parameters of cobalt. The system was optimized for achieving the lowest coercivity in an array of particles located in the nodes of triangular, hexagonal and square grids. Based on the numerical solution of the non-stochastic Landau-Lifshitz-Gilbert equation we show that each particle distribution type is characterized with a proper optimal distance, allowing to lower the coercivity values for approximately 30% compared with the reference value obtained for a single nano-particle. It was shown that the reduction of coercivity occurs even if the particle position in the array is not very precise. In particular, the triangular particle arrangement maintained the same optimal distance between the particles under up to 20% random displacements of their position within the array.
When decreasing the size of nanoscale magnetic particles their magnetization becomes vulnerable to thermal fluctuations as approaching the superparamgnetic limit, hindering thus applications relying on a stable magnetization. Here, we show theoretica lly that a magnetoelectric coupling to a ferroelectric substrate renders possible the realization of substantially smaller nano clusters with thermally stable magnetization. For an estimate of cluster size we perform calculations with realistic material parameters for iron nano particles on ferroelectric BaTiO3 substrate. We find, steering the polarization of BaTiO3 with electric fields affects the magnetism of the deposited magnetic clusters. These findings point to a qualitatively new class of superparamagnetic composites.
Understanding the multiferroic coupling is one of the key issues in the feld of multiferroics. As shown here theoretically, the ferromagnetic resonance (FMR) renders possible an access to the magnetoelectric coupling coefficient in composite multifer roics. This we evidence by a detailed analysis and numerical calculations of FMR in an unstrained chain of BaTiO3 in the tetragonal phase in contact with Fe, including the effect of depolarizing field. The spectra of the absorbed power in FMR are found to be sensitive to the orientation of the interface electric polarization and to an applied static electric field. Here we propose a method for measuring the magnetoelectric coupling coefficient by means of FMR.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا