ترغب بنشر مسار تعليمي؟ اضغط هنا

We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6 with $m_pi = 340 text{MeV}$ and lattice spacing $a sim 0.05 text{fm}$. The relevant three-point functions were computed with source-sink separations ranging from $t_s sim 0.6 text{fm}$ to $t_s sim 1.4 text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا