ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper reports on a search for new classical nova candidates in the M81 galaxy based on archival, as well as recent, new images. We used images from 1999-2007 to search for optical transients in M81. The positions of the identified classical nova candidates were used to study their spatial distribution. Kolmogorov - Smirnov test (KS) and bottom-to-top (BTR) ratio diagnostic were used to analyze the nova candidate distribution and differentiate between the disk and the bulge populations. In total, 49 classical nova candidates were discovered. In this study, we present the precise positions and photometry of these objects, plus the photometry of an additional 9 classical nova candidates found by Neill and Shara (2004). With our large sample, we find a different spatial distribution of classical nova candidates when compared to the results of earlier studies. Also, an extraordinarily bright nova was found and studied in detail.
We present extensive ugrizYHJK photometry and optical spectroscopy of SN 2005gj obtained by the SDSS-II and CSP Supernova Projects, which give excellent coverage during the first 150 days after the time of explosion. These data show that SN 2005gj is the second clear case, after SN 2002ic, of a thermonuclear explosion in a dense circumstellar environment. Both the presence of singly and doubly ionized iron-peak elements (FeIII and weak SII, SiII) near maximum light as well as the spectral evolution show that SN 2002ic-like events are Type Ia explosions. Independent evidence comes from the exponential decay in luminosity of SN 2005gj, pointing to an exponential density distribution of the ejecta. The interaction of the supernova ejecta with the dense circumstellar medium is stronger than in SN 2002ic: (1) the supernova lines are weaker; (2) the Balmer emission lines are more luminous; and (3) the bolometric luminosity is higher close to maximum light. The velocity evolution of the Halpha components suggest that the CSM around SN 2005gj is clumpy and it has a flatter density distribution compared with the steady wind solution, in agreement with SN 2002ic. An early X-ray observation with Chandra gives an upper-limit on the mass loss rate from the companion of < 2x10^{-4} Msun/yr.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا