ترغب بنشر مسار تعليمي؟ اضغط هنا

The in-plane Hall coefficient $R_{H}(T)$ of CeRhIn$_{5}$, CeIrIn$_{5}$, and CeCoIn$_{5}$ and their respective non-magnetic lanthanum analogs are reported in fields to 90 kOe and at temperatures from 2 K to 325 K. $R_{H}(T)$ is negative, field-indepen dent, and dominated by skew-scattering above $sim$ 50 K in the Ce compounds. $R_{H}(H to 0)$ becomes increasingly negative below 50 K and varies with temperature in a manner that is inconsistent with skew scattering. Field-dependent measurements show that the low-T anomaly is strongly suppressed when the applied field is increased to 90 kOe. Measurements on LaRhIn$_{5}$, LaIrIn$_{5}$, and LaCoIn$_{5}$ indicate that the same anomalous temperature dependence is present in the Hall coefficient of these non-magnetic analogs, albeit with a reduced amplitude and no field dependence. Hall angle ($theta_{H}$) measurements find that the ratio $rho_{xx}/rho_{xy}=cot(theta_{H})$ varies as $T^{2}$ below 20 K for all three Ce-115 compounds. The Hall angle of the La-115 compounds follow this T-dependence as well. These data suggest that the electronic-structure contribution dominates the Hall effect in the 115 compounds, with $f$-electron and Kondo interactions acting to magnify the influence of the underlying complex band structure. This is in stark contrast to the situation in most $4f$ and $5f$ heavy-fermion compounds where the normal carrier contribution to the Hall effect provides only a small, T-independent background to $R_{H}.$
267 - S. Chang , P.G. Pagliuso , Wei Bao 2002
The magnetic structure of antiferromagnetic NdRhIn5 has been determined using neutron diffraction. It has a commensurate antiferromagnetic structure with a magnetic wave vector (1/2,0,1/2) below T_N = 11K. The staggered Nd moment at 1.6K is 2.6mu_B a ligned along the c-axis. We find the magnetic structure to be closely related to that of its cubic parent compound NdIn3 below 4.6K. The enhanced T_N and the absence of additional transitions below T_N for NdRhIn5 are interpreted in terms of an improved matching of the crystalline-electric-field (CEF), magnetocrystalline, and exchange interaction anisotropies. In comparison, the role of these competing anisotropies on the magnetic properties of the structurally related compound CeRhIn5 is discussed.
Neutron scattering results for the tetragonal compound CeRhIn5 give evidence for two crystal field (CF) excitations at 6.9 and 23.6 meV. The scattering can be fit assuming a set of CF parameters B$^{0}_{2}$ = -1.03 meV, B$^{0}_{4}$ = 0.044 meV and B$ ^{4}_{4}$ = 0.122 meV. To compare our results to previous work, we calculate the susceptibility and specific heat for this CF scheme, including a molecular field term $lambda = $35 mol/emu to account for the Kondo effect. We also include a calculation based on these CF parameters that uses the non-crossing approximation to the Anderson model to estimate the effect of Kondo physics on the susceptibility, specific heat and neutron linewidths.
Magnetic susceptibility, electrical resistivity and heat capacity data for single crystals of Ce(Rh,Ir)1-x(Co,Ir)xIn5 (0 < x < 1) have allowed us to construct a detailed phase diagram for this new family of heavy-fermion superconductors(HFS). CeRh1-x IrxIn5 displays superconductivity(SC) (Tc < 1 K) over a wide range of composition, which develops out of and coexists (0.30 < x < 0.5) with a magnetically ordered state, with TN ~ 4 K. For CeCo1-xRhxIn5, the superconducting state (Tc ~ 2.3 K for x = 0) becomes a magnetic state (TN ~ 4 K, for x = 1) with two phase transitions observed for 0.40 < x < 0.25. CeCo1-xIrxIn5 also shows two transitions for 0.30 < x < 0.75. For those alloys in which SC is found, a roughly linear relationship between Tc and the lattice parameter ratio c/a, was found, with composition as the implicit parameter. The interplay between magnetism and SC for CeRh1-x(Ir,Co)xIn5 and the possibility of two distinct superconducting states in CeCo1-xIrxIn5 are discussed.
We report the observation of heavy-fermion superconducitivity in CeCoIn5 at Tc =2.3 K. When compared to the pressure-induced Tc of its cubic relative CeIn3 (Tc ~200 mK), the Tc of CeCoIn5 is remarkably high. We suggest that this difference may arise from magnetically mediated superconductivity in the layered crystal structure of CeCoIn5 .
We report a thermodynamic and transport study of the phase diagram of CeRh1-xIrxIn5. Superconductivity is observed over a broad range of doping, 0.3 < x < 1, including a substantial range of concentration (0.3 < x <0.6) over which it coexists with ma gnetic order (which is observed for 0 < x < 0.6). The anomalous transition to zero resistance that is observed in CeIrIn5 is robust against Rh substitution. In fact, the observed bulk Tc in CeRh0.5Ir0.5In5 is more than double that of CeIrIn5, whereas the zero-resistance transition temperature is relatively unchanged for 0.5 < x < 1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا