ترغب بنشر مسار تعليمي؟ اضغط هنا

We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical and numerical exploration of dynamically and energetically stable pinning of vortices with winding number up to $S=6$, in correspondence with experimental observations. Stable pinning is quantified theoretically via Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a range of conditions similar to those of experimental observations. The theoretical and numerical results indicate that the pinned winding number, or equivalently the winding number of the superfluid current about the laser beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps explain previous experimental observations, and helps define limits of stable vortex pinning for future experiments involving vortex manipulation by laser beams.
We consider the existence, stability and dynamics of the nodeless state and fundamental nonlinear excitations, such as vortices, for a quasi-two-dimensional polariton condensate in the presence of pumping and nonlinear damping. We find a series of in teresting features that can be directly contrastedto the case of the typically energy-conserving ultracold alkali-atom Bose-Einstein condensates (BECs). For sizeable parameter ranges, in line with earlier findings, the nodeless state becomes unstable towards the formation of {em stable} nonlinear single or multi-vortex excitations. The potential instability of the single vortex is also examined and is found to possess similar characteristics to those of the nodeless cloud. We also report that, contrary to what is known, e.g., for the atomic BEC case, {it stable} stationary gray rings (that can be thought of as radial forms of a Nozaki-Bekki hole) can be found for polariton condensates in suitable parametric regimes. In other regimes, however, these may also suffer symmetry breaking instabilities. The dynamical, pattern-forming implications of the above instabilities are explored through direct numerical simulations and, in turn, give rise to waveforms with triangular or quadrupolar symmetry.
We describe the dynamic response of a two-dimensional hexagonal packing of uncompressed stainless steel spheres excited by localized impulsive loadings. After the initial impact strikes the system, a characteristic wave structure emerges and continuo usly decays as it propagates through the lattice. Using an extension of the binary collision approximation (BCA) for one-dimensional chains, we predict its decay rate, which compares well with numerical simulations and experimental data. While the hexagonal lattice does not support constant speed traveling waves, we provide scaling relations that characterize the power law decay of the wave velocity. Lastly, we discuss the effects of weak disorder on the directional amplitude decay rates.
We consider the leading order quasicontinuum limits of a one-dimensional granular medium governed by the Hertz contact law under precompression. The approximate model which is derived in this limit is justified by establishing asymptotic bounds for t he error with the help of energy estimates. The continuum model predicts the development of shock waves, which are also studied in the full system with the aid of numerical simulations. We also show that existing results concerning the Nonlinear Schrodinger (NLS) and Korteweg de-Vries (KdV) approximation of FPU models apply directly to a precompressed granular medium in the weakly nonlinear regime.
We study the coupling between backward- and forward-propagating wave modes, with the same group velocity, in a composite right/left-handed nonlinear transmission line. Using an asymptotic multiscale expansion technique, we derive a system of two coup led nonlinear Schr{o}dinger equations governing the evolution of the envelopes of these modes. We show that this system supports a variety of backward- and forward propagating vector solitons, of the bright-bright, bright-dark and dark-bright type. Performing systematic numerical simulations in the framework of the original lattice that models the transmission line, we study the propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons exist, but differ on their robustness: only bright-bright solitons propagate undistorted for long times, while the other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in a very good agreement with the results of the simulations, at least up to times of the order of the solitons lifetimes.
We study the propagation of quasi-discrete microwave solitons in a nonlinear left-handed coplanar waveguide coupled with split ring resonators. By considering the relevant transmission line analogue, we derive a nonlinear lattice model which is studi ed analytically by means of a quasi-discrete approximation. We derive a nonlinear Schr{o}dinger equation, and find that the system supports bright envelope soliton solutions in a relatively wide subinterval of the left-handed frequency band. We perform systematic numerical simulations, in the framework of the nonlinear lattice model, to study the propagation properties of the quasi-discrete microwave solitons. Our numerical findings are in good agreement with the analytical predictions, and suggest that the predicted structures are quite robust and may be observed in experiments.
In this work, we revisit the question of stability of multibreather configurations, i.e., discrete breathers with multiple excited sites at the anti-continuum limit of uncoupled oscillators. We present two methods that yield quantitative predictions about the Floquet multipliers of the linear stability analysis around such exponentially localized in space, time-periodic orbits, based on the Aubry band method and the MacKay effective Hamiltonian method and prove that their conclusions are equivalent. Subsequently, we showcase the usefulness of the methods by a series of case examples including one-dimensional multi-breathers, and two-dimensional vortex breathers in the case of a lattice of linearly coupled oscillators with the Morse potential and in that of the discrete $phi^4$ model.
We investigate nonlinear localized modes at light-mass impurities in a one-dimensional, strongly-compressed chain of beads under Hertzian contacts. Focusing on the case of one or two such defects, we analyze the problems linear limit to identify the system eigenfrequencies and the linear defect modes. We then examine the bifurcation of nonlinear defect modes from their linear counterparts and study their linear stability in detail. We identify intriguing differences between the case of impurities in contact and ones that are not in contact. We find that the former bears similarities to the single defect case, whereas the latter features symmetry-breaking bifurcations with interesting static and dynamic implications.
We study the existence and stability of multisite discrete breathers in two prototypical non-square Klein-Gordon lattices, namely a honeycomb and a hexagonal one. In the honeycomb case we consider six-site configurations and find that for soft potent ial and positive coupling the out-of-phase breather configuration and the charge-two vortex breather are linearly stable, while the in-phase and charge-one vortex states are unstable. In the hexagonal lattice, we first consider three-site configurations. In the case of soft potential and positive coupling, the in-phase configuration is unstable and the charge-one vortex is linearly stable. The out-of-phase configuration here is found to always be linearly unstable. We then turn to six-site configurations in the hexagonal lattice. The stability results in this case are the same as in the six-site configurations in the honeycomb lattice. For all configurations in both lattices, the stability results are reversed in the setting of either hard potential or negative coupling. The study is complemented by numerical simulations which are in very good agreement with the theoretical predictions. Since neither the form of the on-site potential nor the sign of the coupling parameter involved have been prescribed, this description can accommodate inverse-dispersive systems (e.g., supporting backward waves) such as transverse dust-lattice oscillations in dusty plasma (Debye) crystals or analogous modes in molecular chains.
In this paper, we consider the dynamical evolution of dark vortex states in the two-dimensional defocusing discrete nonlinear Schroedinger model, a model of interest both to atomic physics and to nonlinear optics. We find that in a way reminiscent of their 1d analogs, i.e., of discrete dark solitons, the discrete defocusing vortices become unstable past a critical coupling strength and, in the infinite lattice, they apparently remain unstable up to the continuum limit where they are restabilized. In any infinite lattice, stabilization windows of the structures may be observed. Systematic tools are offered for the continuation of the states both from the continuum and, especially, from the anti-continuum limit. Although the results are mainly geared towards the uniform case, we also consider the effect of harmonic trapping potentials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا