ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new high resolution inelastic neutron scattering data on the candidate spin liquid Tb2Ti2O7. We find that there is no evidence for a zero field splitting of the ground state doublet within the 0.2 K resolution of the instrument. This resul t contrasts with a pair of recent works on Tb2Ti2O7 claiming that the spin liquid behavior can be attributed to a 2 K split singlet-singlet single-ion spectrum at low energies. We also reconsider the entropy argument presented in Chapuis {it et al.} as further evidence of a singlet-singlet crystal field spectrum. We arrive at the conclusion that estimates of the low temperature residual entropy drawn from heat capacity measurements are a poor guide to the single ion spectrum without understanding the nature of the correlations.
The rare earth pyrochlore magnet Yb2Ti2O7 is among a handful of materials that apparently exhibit no long range order down to the lowest explored temperatures and well below the Curie-Weiss temperature. Paramagnetic neutron scattering on a single cry stal sample has revealed the presence of anisotropic correlations and recent work has led to the proposal of a detailed microscopic Hamiltonian for this material involving significantly anisotropic exchange. In this article, we compute the local sublattice susceptibility of Yb2Ti2O7 from the proposed model and compare with the measurements of Cao and coworkers [Physical Review Letters, {103}, 056402 (2009)], finding quite good agreement. In contrast, a model with only isotropic exchange and long range magnetostatic dipoles gives rise to a local susceptiblity that is inconsistent with the data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا