ترغب بنشر مسار تعليمي؟ اضغط هنا

The electric dipole strength in 120Sn has been extracted from proton inelastic scattering experiments at E_p = 295 MeV and at forward angles including 0 degree. Below neutron threshoild it differs from the results of a 120Sn(gamma,gamma) experiment a nd peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and is more than three times larger than what is observed with the (gamma,gamma) reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1- states.
91 - V.D. Efros 2013
Properties of the first excited state of the nucleus 9Be are discussed based on recent (e,e) and (gamma,n) experiments. The parameters of an R-matrix analysis of different data sets are consistent with a resonance rather than a virtual state predicte d by some model calculations. The energy and the width of the resonance are deduced. Their values are rather similar for all data sets, and the energy proves to be negative. It is argued that the disagreement between the extracted B(E1) values may stem from different ways of integration of the resonance. If corrected, fair agreement between the (e,e) and one of the (gamma,n) data sets is found. A recent (gamma,n) experiment at the HIgS facility exhibits larger cross sections close to the neutron threshold which remain to be explained.
74 - I. Poltoratska 2012
Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excita tion. A separation from nuclear excitation of other modes is achieved by a multipole decomposition analysis of the experimental cross sections based on theoretical angular distributions calculated within the quasiparticle-phonon model. The B(E1) transition strength distribution is extracted for excitation energies up to 9 MeV, i.e., in the region of the so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows sensitivity to the underlying structure of the E1 transitions, which allows for the first time an experimental extraction of the electromagnetic transition strength and the energy centroid of the PDR.
75 - A. Tamii 2011
A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r_skin = 0.156+0.025-0.021 fm in 208Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence, relevant to the description of neutron stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا