ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a theoretical study of the resonance fluorescence spectra of an optically driven quantum dot placed near a single metal nanoparticle. The metallic reservoir coupling is calculated for an 8-nm metal nanoparticle using a time-convolutionless master equation approach where the exact photon reservoir function is included using Green function theory. By exciting the system coherently near the nanoparticle dipole mode, we show that the driven Mollow spectrum becomes highly asymmetric due to internal coupling effects with higher-order plasmons. We also highlight regimes of resonance squeezing and broadening as well as spectral reshaping through light propagation. Our master equation technique can be applied to any arbitrary material system, including lossy inhomogeneous structures, where mode expansion techniques are known to break down.
176 - S. Hughes , P. Yao , F. Milde 2011
We present a medium-dependent quantum optics approach to describe the influence of electron-acoustic phonon coupling on the emission spectra of a strongly coupled quantum-dot cavity system. Using a canonical Hamiltonian for light quantization and a p hoton Green function formalism, phonons are included to all orders through the dot polarizability function obtained within the independent Boson model. We derive simple user-friendly analytical expressions for the linear quantum light spectrum, including the influence from both exciton and cavity-emission decay channels. In the regime of semiconductor cavity-QED, we study cavity emission for various exciton-cavity detunings and demonstrate rich spectral asymmetries as well as cavity-mode suppression and enhancement effects. Our technique is nonperturbative, and non-Markovian, and can be applied to study photon emission from a wide range of semiconductor quantum dot structures, including waveguides and coupled cavity arrays. We compare our theory directly to recent and apparently puzzling experimental data for a single site-controlled quantum dot in a photonic crystal cavity and show good agreement as a function of cavity-dot detuning and as a function of temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا