ترغب بنشر مسار تعليمي؟ اضغط هنا

The spin-dependent electron transport has been studied in magnetic semiconductor waveguides (nanowires) in the helical magnetic field. We have shown that -- apart from the known conductance dip located at the magnetic field equal to the helical-field amplitude $B_h$ -- the additional conductance dips (with zero conductance) appear at magnetic field different from $B_h$. This effect occuring in the non-adiabatic regime is explained as resulting from the resonant Landau-Zener transitions between the spin-splitted subbands.
95 - K. P. Wojcik , I. Weymann 2014
We study the spin-resolved transport properties of T-shaped double quantum dots coupled to ferromagnetic leads. Using the numerical renormalization group method, we calculate the linear conductance and the spin polarization of the current for various model parameters and at different temperatures. We show that an effective exchange field due to the presence of ferromagnets results in different conditions for Fano destructive interference in each spin channel. This spin dependence of the Fano effect leads to perfect spin polarization, the sign of which can be changed by tuning the dots levels. Large spin polarization occurs due to Coulomb correlations in the dot, which is not directly coupled to the leads, while finite correlations in the directly-coupled dot can further enhance this effect. Moreover, we complement accurate numerical results with a simple qualitative explanation based on analytical expressions for the zero-temperature conductance. The proposed device provides a prospective example of an electrically-controlled, fully spin-polarized current source, which operates without an external magnetic field.
A proposal of a spin separator based on the spin Zeeman effect in Y-shaped nanostructure with a quantum point contact is presented. Our calculations show that the appropriate tuning of the quantum point contact potential and the external magnetic fie ld leads to the spin separation of the current: electrons with opposite spins flow through the different output branches. We demonstrate that this effect is robust against the scattering on impurities. The proposed device can also operate as a spin detector, in which -- depending on the electron spin -- the current flows through one of the output branches.
We study the electric and thermoelectric transport properties of correlated quantum dots coupled to two ferromagnetic leads and one superconducting electrode. Transport through such hybrid devices depends on the interplay of ferromagnetic-contact ind uced exchange field, superconducting proximity effect and correlations leading to the Kondo effect. We consider the limit of large superconducting gap. The system can be then modeled by an effective Hamiltonian with a particle-non-conserving term describing the creation and annihilation of Cooper pairs. By means of the full density-matrix numerical renormalization group method, we analyze the behavior of electrical and thermal conductances, as well as the Seebeck coefficient as a function of temperature, dot level position and the strength of the coupling to the superconductor. We show that the exchange field may be considerably affected by the superconducting proximity effect and is generally a function of Andreev bound state energies. Increasing the coupling to the superconductor may raise the Kondo temperature and partially restore the exchange-field-split Kondo resonance. The competition between ferromagnetic and superconducting proximity effects is reflected in the corresponding temperature and dot level dependence of both the linear conductance and the (spin) thermopower.
We study the spin-resolved transport through single-level quantum dots strongly coupled to ferromagnetic leads in the Kondo regime, with a focus on contact and material asymmetry-related effects. By using the numerical renormalization group method, w e analyze the dependence of relevant spectral functions, linear conductance and tunnel magnetoresistance on the system asymmetry parameters. In the parallel magnetic configuration of the device the Kondo effect is generally suppressed due to the presence of exchange field, irrespective of systems asymmetry. In the antiparallel configuration, on the other hand, the Kondo effect can develop if the system is symmetric. We show that even relatively weak asymmetry may lead to the suppression of the Kondo resonance in the antiparallel configuration and thus give rise to nontrivial behavior of the tunnel magnetoresistance. In addition, by using the second-order perturbation theory we derive general formulas for the exchange field in both magnetic configurations of the system.
A spin-dependent quantum transport is investigated in a paramagnetic resonant tunneling diode (RTD) based on a Zn$_{1-x}$Mn$_x$Se/ZnBeSe heterostructure. Using the Wigner-Poisson method and assuming the two-current model we have calculated the curren t-voltage characteristics, potential energy profiles and electron density distributions for spin-up and spin-down electron current in an external magnetic field. We have found that -- for both the spin-polarized currents -- two types of the current hysteresis appear on the current-voltage characteristics. The current hysteresis of the first type occurs at the bias voltage below the resonant current peak and results from the accumulation of electrons in the quantum well layer. The current hysteresis of the second type appears at the bias voltage above the resonant current peak and is caused by the creation of the quasi-bound state in the left contact region and the resonant tunneling through this quasi-bound state. The physical interpretation of both the types of the current hysteresis is further supported by the analysis of the calculated self-consistent potential profiles and electron density distributions. Based on these results we have shown that -- in certain bias voltage and magnetic field ranges -- the spin polarization of the current exhibits the plateau behavior with the nearly full spin polarization. This property is very promising for possible applications in spintronics.
The electron transport through the triple-barrier resonant tunnelling diode (TBRTD) have been studied by the self-consistent numerical method for the Wigner-Poisson problem. The electron flow through the TBRTD can be controlled by the gate voltage ap plied to one of the potential well regions. For different gate voltage values we have determined the current-voltage characteristics, potential energy profiles, and electron density distribution. We have found the enhancement of the peak-to-valley ratio (up to $sim$10), the appearance of the linear current versus bias voltage behaviour within the negative-differential resistance region, and the bistability of the current-voltage characteristics. The analysis of the self-consistent potential energy profiles and electron density distribution allowed us to provide a physical interpretation of these properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا