ترغب بنشر مسار تعليمي؟ اضغط هنا

Some radio pulsars show clear drifting subpulses, in which subpulses are seen to drift in pulse longitude in a systematic pattern. Here we examine how the drifting subpulses of PSR B0809+74 evolve with time and observing frequency. We show that the s ubpulse period (P3) is constant on timescales of days, months and years, and between 14-5100 MHz. Despite this, the shapes of the driftbands change radically with frequency. Previous studies have concluded that, while the subpulses appear to move through the pulse window approximately linearly at low frequencies (< 500 MHz), a discrete step of 180 degrees in subpulse phase is observed at higher frequencies (> 820 MHz) near to the peak of the average pulse profile. We use LOFAR, GMRT, GBT, WSRT and Effelsberg 100-m data to explore the frequency-dependence of this phase step. We show that the size of the subpulse phase step increases gradually, and is observable even at low frequencies. We attribute the subpulse phase step to the presence of two separate driftbands, whose relative arrival times vary with frequency - one driftband arriving 30 pulses earlier at 20 MHz than it does at 1380 MHz, whilst the other arrives simultaneously at all frequencies. The drifting pattern which is observed here cannot be explained by either the rotating carousel model or the surface oscillation model, and could provide new insight into the physical processes happening within the pulsar magnetosphere.
We have used the 76-m Lovell, 94-m equivalent WSRT and 100-m Effelsberg radio telescopes to investigate the simultaneous single-pulse properties of the radio emitting magnetar AXP XTE J1810-197 at frequencies of 1.4, 4.8 and 8.35 GHz during May and J uly 2006. We study the magnetars pulse-energy distributions which are found to be very peculiar as they are changing on time-scales of days and cannot be fit by a single statistical model. The magnetar exhibits strong spiky single giant-pulse-like subpulses, but they do not fit the definition of the giant pulse or giant micropulse phenomena. Measurements of the longitude-resolved modulation index reveal a high degree of intensity fluctuations on day-to-day time-scales and dramatic changes across pulse phase. We find the frequency evolution of the modulation index values differs significantly from what is observed in normal radio pulsars. We find that no regular drifting subpulse phenomenon is present at any of the observed frequencies at any observing epoch. However, we find a quasi-periodicity of the subpulses present in the majority of the observing sessions. A correlation analysis indicates a relationship between components from different frequencies. We discuss the results of our analysis in light of the emission properties of normal radio pulsars and a recently proposed model which takes radio emission from magnetars into consideration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا