ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the spin and charge densities of surface states of the three-dimensional topological insulator $Bi_2Se_3$, starting from the continuum description of the material [Zhang {em et al.}, Nat. Phys. 5, 438 (2009)]. The spin structure on sur faces other than the 111 surface has additional complexity because of a misalignment of the contributions coming from the two sublattices of the crystal. For these surfaces we expect new features to be seen in the spin-resolved ARPES experiments, caused by a non-helical spin-polarization of electrons at the individual sublattices as well as by the interference of the electron waves emitted coherently from two sublattices. We also show that the position of the Dirac crossing in spectrum of surface states depends on the orientation of the interface. This leads to contact potentials and surface charge redistribution at edges between different facets of the crystal.
A direct signature of electron transport at the metallic surface of a topological insulator is the Aharonov-Bohm oscillation observed in a recent study of Bi_2Se_3 nanowires [Peng et al., Nature Mater. 9, 225 (2010)] where conductance was found to os cillate as a function of magnetic flux $phi$ through the wire, with a period of one flux quantum $phi_0=h/e$ and maximum conductance at zero flux. This seemingly agrees neither with diffusive theory, which would predict a period of half a flux quantum, nor with ballistic theory, which in the simplest form predicts a period of $phi_0$ but a minimum at zero flux due to a nontrivial Berry phase in topological insulators. We show how h/e and h/2e flux oscillations of the conductance depend on doping and disorder strength, provide a possible explanation for the experiments, and discuss further experiments that could verify the theory.
We numerically calculate the conductivity $sigma$ of an undoped graphene sheet (size $L$) in the limit of vanishingly small lattice constant. We demonstrate one-parameter scaling for random impurity scattering and determine the scaling function $beta (sigma)=dlnsigma/dln L$. Contrary to a recent prediction, the scaling flow has no fixed point ($beta>0$) for conductivities up to and beyond the symplectic metal-insulator transition. Instead, the data supports an alternative scaling flow for which the conductivity at the Dirac point increases logarithmically with sample size in the absence of intervalley scattering -- without reaching a scale-invariant limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا