ترغب بنشر مسار تعليمي؟ اضغط هنا

In this splinter session, ten speakers presented results on solar and stellar activity and how the two fields are connected. This was followed by a lively discussion and supplemented by short, one-minute highlight talks. The talks presented new theor etical and observational results on mass accretion on the Sun, the activity rate of flare stars, the evolution of the stellar magnetic field on time scales of a single cycle and over the lifetime of a star, and two different approaches to model the radial-velocity jitter in cool stars that is due to the granulation on the surface. Talks and discussion showed how much the interpretation of stellar activity data relies on the sun and how the large number of objects available in stellar studies can extend the parameter range of activity models.
48 - P. Boerner , P. Testa , H. Warren 2013
We present an assessment of the accuracy of the calibration measurements and atomic physics models that go into calculating the SDO/AIA response as a function of wavelength and temperature. The wavelength response is tested by convolving SDO/EVE and {it Hinode}/EIS spectral data with the AIA effective area functions and comparing the predictions with AIA observations. For most channels, the AIA intensities summed over the disk agree with the corresponding measurements derived from the current Version (V2) of the EVE data to within the estimated 25% calibration error. This agreement indicates that the AIA effective areas are generally stable in time. The AIA 304 AA channel, however, does show degradation by a factor of almost 3 from May 2010 through September 2011, when the throughput apparently reached a minimum. We also find some inconsistencies in the 335 AA passband, possibly due to higher-order contamination of the EVE data. The intensities in the AIA 193 AA channel agree to within the uncertainties with the corresponding measurements from EIS full CCD observations. Analysis of high-resolution X-ray spectra of the solar-like corona of Procyon, and of EVE spectra, allows us to investigate the accuracy and completeness of the CHIANTI database in the AIA shorter wavelength passbands. We find that in the 94 AA channel, the spectral model significantly underestimates the plasma emission owing to a multitude of missing lines. We derive an empirical correction for the AIA temperature responses by performing differential emission measure (DEM) inversion on a broad set of EVE spectra and adjusting the AIA response functions so that the count rates predicted by the full-disk DEMs match the observations.
199 - P. Testa 2008
We present evidence of Fe fluorescent emission in the Chandra HETGS spectrum of the single G-type giant HR 9024 during a large flare. In analogy to solar X-ray observations, we interpret the observed Fe K$alpha$ line as being produced by illumination of the photosphere by ionizing coronal X-rays, in which case, for a given Fe photospheric abundance, its intensity depends on the height of the X-ray source. The HETGS observations, together with 3D Monte Carlo calculations to model the fluorescence emission, are used to obtain a direct geometric constraint on the scale height of the flaring coronal plasma. We compute the Fe fluorescent emission induced by the emission of a single flaring coronal loop which well reproduces the observed X-ray temporal and spectral properties according to a detailed hydrodynamic modeling. The predicted Fe fluorescent emission is in good agreement with the observed value within observational uncertainties, pointing to a scale height $lesssim 0.3$rstar. Comparison of the HR 9024 flare with that recently observed on II Peg by Swift indicates the latter is consistent with excitation by X-ray photoionization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا