ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - P. Tanga , B. Carry , F. Colas 2015
Asteroid (234) Barbara is the prototype of a category of asteroids that has been shown to be extremely rich in refractory inclusions, the oldest material ever found in the Solar System. It exhibits several peculiar features, most notably its polarime tric behavior. In recent years other objects sharing the same property (collectively known as Barbarians) have been discovered. Interferometric observations in the mid-infrared with the ESO VLTI suggested that (234) Barbara might have a bi-lobated shape or even a large companion satellite. We use a large set of 57 optical lightcurves acquired between 1979 and 2014, together with the timings of two stellar occultations in 2009, to determine the rotation period, spin-vector coordinates, and 3-D shape of (234) Barbara, using two different shape reconstruction algorithms. By using the lightcurves combined to the results obtained from stellar occultations, we are able to show that the shape of (234) Barbara exhibits large concave areas. Possible links of the shape to the polarimetric properties and the object evolution are discussed. We also show that VLTI data can be modeled without the presence of a satellite.
97 - P. Tanga 2008
Context: Observation of star occultations is a powerful tool to determine shapes and sizes of asteroids. This is key information necessary for studying the evolution of the asteroid belt and to calibrate indirect methods of size determination, such a s the models used to analyze thermal infrared observations. Up to now, the observation of asteroid occultations is an activity essentially secured by amateur astronomers equipped with small, portable equipments. However, the accuracy of the available ephemeris prevents accurate predictions of the occultation events for objects smaller than ~100 km. Aims: We investigate current limits in predictability and observability of asteroid occultations, and we study their possible evolution in the future, when high accuracy asteroid orbits and star positions (such as those expected from the mission Gaia of the European Space Agency) will be available. Methods: We use a simple model for asteroid ephemeris uncertainties and numerical algorithms for estimating the limits imposed by the instruments, assuming realistic CCD performances and asteroid size distribution, to estimate the expected occultation rate under different conditions. Results: We show that high accuracy ephemerides which will be available in the future will extend toward much smaller asteroids the possibility of observing asteroid occultations, greatly increasing the number of events and objects involved. A complete set of size measurements down to ~10 km main belt asteroids could be obtained in a few years, provided that a small network of ground-based 1m telescopes are devoted to occultation studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا