ترغب بنشر مسار تعليمي؟ اضغط هنا

The magnetic Hamiltonian of the Heisenberg quantum antiferromagnet SrCuTe$_{2}$O$_{6}$ is studied by inelastic neutron scattering technique on powder and single crystalline samples above and below the magnetic transition temperatures at 8 K and 2 K. The high temperature spectra reveal a characteristic diffuse scattering corresponding to a multi-spinon continuum confirming the dominant quantum spin-chain behavior due to the third neighbour interaction J$_{intra}$ = 4.22 meV (49 K). The low temperature spectra exhibits sharper excitations at energies below 1.25 meV which can be explained by considering a combination of weak antiferromagnetic first nearest neighbour interchain coupling J$_1$ = 0.17 meV (1.9 K) and even weaker ferromagnetic second nearest neighbour J$_2$ = -0.037 meV (-0.4 K) or a weak ferromagnetic J$_2$ = -0.11 meV (-1.3 K) and antiferromagnetic J$_6$ = 0.16 meV (1.85 K) giving rise to the long-range magnetic order and spin-wave excitations at low energies. These results suggest that SrCuTe$_{2}$O$_{6}$ is a highly one-dimensional Heisenberg system with three mutually perpendicular spin-chains coupled by a weak ferromagnetic J$_2$ in addition to the antiferromagnetic J$_1$ or J$_6$ presenting a contrasting scenario from the highly frustrated hyper-hyperkagome lattice (equally strong antiferromagnetic J$_1$ and J$_2$) found in the iso-structural PbCuTe$_{2}$O$_{6}$.
Inelastic-neutron-scattering measurements were performed on a single crystal of the heavy-fermion paramagnet UTe$_2$ above its superconducting temperature. We confirm the presence of antiferromagnetic fluctuations with the incommensurate wavevector $ mathbf{k}_1=(0,0.57,0)$. A quasielastic signal is found, whose momentum-transfer dependence is compatible with fluctuations of magnetic moments $muparallelmathbf{a}$, with a sine-wave modulation of wavevector $mathbf{k}_1$ and in-phase moments on the nearest U atoms. Low dimensionality of the magnetic fluctuations, consequence of the ladder structure, is indicated by weak correlations along the direction $mathbf{c}$. These fluctuations saturate below the temperature $T_1^*simeq15$~K, in possible relation with anomalies observed in thermodynamic, electrical-transport and nuclear-magnetic-resonance measurements. The absence or weakness of ferromagnetic fluctuations, in our data collected at temperatures down to 2.1 K and energy transfers from 0.6 to 7.5 meV, is emphasized. These results constitute constraints for models of magnetically-mediated superconductivity in UTe$_2$.
We present an inelastic neutron scattering study on single-crystalline LiFeAs devoted to the characterization of the incommensurate antiferromagnetic fluctuations at $mathbf{Q}=(0.5pmdelta, 0.5mpdelta, q_l)$. Time-of-flight measurements show the pres ence of these magnetic fluctuations up to an energy transfer of 60 meV, while polarized neutrons in combination with longitudinal polarization analysis on a triple-axis spectrometer prove the pure magnetic origin of this signal. The normalization of the magnetic scattering to an absolute scale yields that magnetic fluctuations in LiFeAs are by a factor eight weaker than the resonance signal in nearly optimally Co-doped BaFe$_2$As$_2$, although a factor two is recovered due to the split peaks owing to the incommensurability. The longitudinal polarization analysis indicates weak spin space anisotropy with slightly stronger out-of-plane component between 6 and 12 meV. Furthermore, our data suggest a fine structure of the magnetic signal most likely arising from superposing nesting vectors.
142 - P. Steffens , O. Friedt , Y. Sidis 2010
By inelastic neutron scattering, we have analyzed the magnetic correlations in the paramagnetic metallic region of the series Ca(2-x)Sr(x)RuO(4), 0.2<=x<=0.62. We find different contributions that correspond to 2D ferromagnetic fluctuations and to fl uctuations at incommensurate wave vectors (0.11,0,0), (0.26,0,0) and (0.3,0.3,0). These components constitute the measured response as function of the Sr-concentration x, of the magnetic field and of the temperature. A generic model is applicable to metallic Ca(2-x)Sr(x)RuO(4) close to the Mott transition, in spite of their strongly varying physical properties. The amplitude, characteristic energy and width of the incommensurate components vary only little as function of x, but the ferromagnetic component depends sensitively on concentration, temperature and magnetic field. While ferromagnetic fluctuations are very strong in Ca1.38Sr0.62RuO4 with a low characteristic energy of 0.2 meV at T=1.5 K, they are strongly suppressed in Ca1.8Sr0.2RuO4, but reappear upon the application of a magnetic field and form a magnon mode above the metamagnetic transition. The inelastic neutron scattering results document how the competition between ferromagnetic and incommensurate antiferromagnetic instabilities governs the physics of this system.
We studied the crystal and magnetic structure of Ca2RuO4 by different diffraction techniques under high pressure. The observed first order phase transition at moderate pressure (0.5 GPa) between the insulating phase and the metallic high pressure pha se is characterized by a broad region of phase coexistence. The following structural changes are observed as function of pressure: a) a discontinuous change of both the tilt and rotation angle of the RuO6-Octahedra at this transition, b) a gradual decrease of the tilt angle in the high pressure phase (p>0.5 GPa) and c) the disappearance of the tilt above 5.5GPa leading to a higher symmetry structure. By single crystal neutron diffraction at low temperature, the ferromagnetic component of the high pressure phase and a rearrangement of antiferromagnetic order in the low pressure phase was observed.
The crystal structure of Ca_{2-x}Sr_xRuO_4 with 0.2 < x < 1.0 has been studied by diffraction techniques and by high resolution capacitance dilatometry as a function of temperature and magnetic field. Upon cooling in zero magnetic field below about 2 5 K the structure shrinks along the c-direction and elongates in the a, b planes (0.2 < x < 1.0), whereas the opposite occurs upon cooling at high-field (x = 0.2 and 0.5). These findings indicate an orbital rearrangement driven by temperature and magnetic field, which accompanies the metamagnetic transition in these compounds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا