ترغب بنشر مسار تعليمي؟ اضغط هنا

92 - P. Soleri 2012
We present our monitoring campaign of the outburst of the black-hole candidate Swift J1753.5-0127, observed with the Rossi X-ray Timing Explorer and the Swift satellites. After ~4.5 years since its discovery, the source had a transition to the hard i ntermediate state. We performed spectral and timing studies of the transition showing that, unlike the majority of the transient black holes, the system did not go to the soft states but it returned to the hard state after a few months. During this transition Swift J1753.5-0127 features properties which are similar to those displayed by the black hole Cygnus X-1. We compared Swift J1753.5-0127 to one dynamically confirmed black hole and two neutron stars showing that its power spectra are in agreement with the binary hosting a black hole. We also suggest that the prolonged period at low flux that followed the initial flare is reminiscent of that observed in other X-ray binaries, as well as in cataclysmic variables.
In studies of accreting black holes in binary systems, empirical relations have been proposed to quantify the coupling between accretion processes and ejection mechanisms. These processes are probed respectively by means of X-ray and radio/optical-in frared observations. The relations predict, given certain accretion conditions, the expected energy output in the form of a jet. We investigated this coupling by studying the black hole candidate Swift J1753.5-0127, via multiwavelength coordinated observations over a period of ~4 years. We present the results of our campaign showing that, all along the outburst, the source features a jet that is fainter than expected from the empirical correlation between the radio and the X-ray luminosities in hard spectral state. Because the jet is so weak in this system the near-infrared emission is, unusually for this state and luminosity, dominated by thermal emission from the accretion disc. We briefly discuss the importance and the implications of a precise determination of both the slope and the normalisation of the correlations, listing some possible parameters that broadband jet models should take into account to explain the population of sources characterized by a dim jet. We also investigate whether our data can give any hint about the nature of the compact object in the system, since its mass has not been dynamically measured.
126 - P. Soleri 2008
We present the results of the analysis of two Chandra observations of Circinus X-1 performed in 2007, for a total exposure time of ~50 ks. The source was observed with the High Resolution Camera during a long X-ray low-flux state of the source. Cir X -1 is an accreting neutron-star binary system that exhibits ultra-relativistic arcsec-scale radio jets and an extended arcmin-scale radio nebula. Furthermore, a recent paper has shown an X-ray excess on arcmin-scale prominent on the side of the receding radio jet. In our images we clearly detect X-ray structures both on the side of the receding and the approaching radio jet. The X-ray emission is consistent with being from synchrotron origin. Our detection is consistent with neutron-star binaries being as efficient as black-hole binaries in producing X-ray outflows, despite their shallower gravitational potential.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا