ترغب بنشر مسار تعليمي؟ اضغط هنا

215 - P. Siyushev , K. Xia , R. Reuter 2014
Rare-earth-doped crystals are excellent hardware for quantum storage of optical information. Additional functionality of these materials is added by their waveguiding properties allowing for on-chip photonic networks. However, detection and coherent properties of rare-earth single-spin qubits have not been demonstrated so far. Here, we present experimental results on high-fidelity optical initialization, effcient coherent manipulation, and optical readout of a single electron spin of Ce$^{3+}$ ion in a YAG crystal. Under dynamic decoupling, spin coherence lifetime reaches $T_2$=2 ms and is almost limited by the measured spin-lattice relaxation time $T_1$=3.8 ms. Strong hyperfine coupling to aluminium nuclear spins suggests that cerium electron spins can be exploited as an interface between photons and long-lived nuclear spin memory. Combined with high brightness of Ce$^{3+}$ emission and a possibility of creating photonic circuits out of the host material, this makes cerium spins an interesting option for integrated quantum photonics.
159 - P. Siyushev , H. Pinto , A. Gali 2012
In this paper, we study the photoinduced switching of the nitrogen-vacancy (NV) center between two different charge states - negative (NV-) and neutral (NV0) at liquid helium temperature. The conversion of NV- to NV0 on a single defect is experimenta lly proven and its rate scales quadratically with power under resonant excitation. In addition, we found that resonant excitation of the neutral NV changes the charge state, recovering its negative configuration. This type of conversion significantly improves spectral stability of NV- defect and allows high fidelity initialization of the spin qubit. A possible mechanism for ionization and recovery of the NV- defect is discussed. This study provides better understanding of the charge dynamics of the NV center, which is relevant for quantum information processing based on NV defect in diamond.
Optical detection of single defect centers in the solid state is a key element of novel quantum technologies. This includes the generation of single photons and quantum information processing. Unfortunately the brightness of such atomic emitters is l imited. Therefore we experimentally demonstrate a novel and simple approach that uses off-the-shelf optical elements. The key component is a solid immersion lens made of diamond, the host material for single color centers. We improve the excitation and detection of single emitters by one order of magnitude, as predicted by theory.
In this paper, we study the optical properties of single defects emitting in the near infrared in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implan tation and annealing. We show that single defects exhibit several striking features at cryogenic temperature: the photoluminescence is strongly concentrated into a sharp zero-phonon line in the near infrared, the radiative lifetime is in the nanosecond range and the emission is perfectly linearly polarized. The spectral stability of the defects is then investigated. An optical resonance linewidth of 4 GHz is measured using resonant excitation on the zero-phonon line. Although Fourier-transform limited emission is not achieved, our results show that it might be possible to use consecutive photons emitted in the near infrared by single defects in diamond nanocrystals to perform two photon interference experiments, which are at the heart of linear quantum computing protocols.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا