ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas plays a major role in the dynamical evolution of protoplanetary discs. Its coupling with the dust is the key to our understanding planetary formation. Studying the gas content is therefore a crucial step towards understanding protoplanetary discs evolution. Such a study can be made through spectroscopic observations of emission lines in the far-infrared, where some of the most important gas coolants emit, such as the [OI] 3P1-3 P2 transition at 63.18 microns. We aim at characterising the gas content of protoplanetary discs in the intermediate-aged Chamaeleon II (Cha II) star forming region. We also aim at characterising the gaseous detection fractions within this age range, which is an essential step tracing gas evolution with age in different star forming regions. We obtained Herschel-PACS line scan spectroscopic observations at 63 microns of 19 Cha II Class I and II stars. The observations were used to trace [OI] and o-H2O at 63 microns. The analysis of the spatial distribution of [OI], when extended, can be used to understand the origin of the emission. We have detected [OI] emission toward seven out of the nineteen systems observed, and o-H2O emission at 63.32 microns in just one of them, Sz 61. Cha II members show a correlation between [OI] line fluxes and the continuum at 70 microns, similar to what is observed in Taurus. We analyse the extended [OI] emission towards the star DK Cha and study its dynamical footprints in the PACS Integral Field Unit (IFU). We conclude that there is a high velocity component from a jet combined with a low velocity component with an origin that may be a combination of disc, envelope and wind emission. The stacking of spectra of objects not detected individually in [OI] leads to a marginal 2.6sigma detection that may indicate the presence of gas just below our detection limits for some, if not all, of them.
Context. Debris discs are thought to be formed through the collisional grinding of planetesimals, and can be considered as the outcome of planet formation. Understanding the properties of gas and dust in debris discs can help us to comprehend the arc hitecture of extrasolar planetary systems. Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have provided a valuable dataset for the study of debris discs gas and dust composition. This paper is part of a series of papers devoted to the study of Herschel PACS observations of young stellar associations. Aims. This work aims at studying the properties of discs in the Beta Pictoris Moving Group (BPMG) through far-IR PACS observations of dust and gas. Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100 and 160 microns of 19 BPMG members, together with spectroscopic observations of four of them. Spectroscopic observations were centred at 63.18 microns and 157 microns, aiming to detect [OI] and [CII] emission. We incorporated the new far-IR observations in the SED of BPMG members and fitted modified blackbody models to better characterise the dust content. Results. We have detected far-IR excess emission toward nine BPMG members, including the first detection of an IR excess toward HD 29391.The star HD 172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding the short list of debris discs with a gas detection. No debris disc in BPMG is detected in both [OI] and [CII]. The discs show dust temperatures in the range 55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii from blackbody models in the range 3 to 82 AU. All the objects with a gas detection are early spectral type stars with a hot dust component.
Context. Circumstellar discs are the places where planets form, therefore knowledge of their evolution is crucial for our understanding of planet formation. The Herschel Space Observatory is providing valuable data for studying disc systems, thanks t o its sensitivity and wavelength coverage. This paper is one of several devoted to analysing and modelling Herschel-PACS observations of various young stellar associations from the GASPS Open Time Key Programme. Aims. The aim of this paper is to elucidate the gas and dust properties of circumstellar discs in the 10 Myr TW Hya Association (TWA) using new far-infrared (IR) imaging and spectroscopy from Herschel-PACS. Methods. We obtained far-IR photometric data at 70, 100, and 160 microns of 14 TWA members; spectroscopic observations centred on the [OI] line at 63.18 microns were also obtained for 9 of the 14. The new photometry for each star was incorporated into its full spectral energy distribution (SED). Results. We detected excess IR emission that is characteristic of circumstellar discs from five TWA members, and computed upper limits for another nine. Two TWA members (TWA 01 and TWA 04B) also show [OI] emission at 63.18 microns. Discs in the TWA association display a variety of properties, with a wide range of dust masses and inner radii, based on modified blackbody modelling. Both transitional and debris discs are found in the sample. Models for sources with a detected IR excess give dust masses in the range from 0.15 Msun to 63 Msun.
Line spectra of 68 Taurus T Tauri stars were obtained with the Herschel-PACS (Photodetector Array Camera & Spectrometer) instrument as part of the GASPS (Gas Evolution in Protoplanetary Systems) survey of protoplanetary discs. A careful examination o f the line scans centred on the [OI] 63.18 microns fine-structure line unveiled a line at 63.32 micron in some of these spectra. We identify this line with a transition of ortho-water. It is detected confidently (i.e., >3 sigma) in eight sources, i.e., 24% of the sub-sample with gas-rich discs. Several statistical tests were used to search for correlations with other disc and stellar parameters such as line fluxes of [OI] 6300 Armstrong and 63.18 microns; X-ray luminosity and continuum levels at 63 microns and 850 microns. Correlations are found between the water line fluxes and the [OI] 63.18 microns line luminosity, the dust continuum, and possibly with the stellar X-ray luminosity. This is the first time that this line of warm water vapour has been detected in protoplanetary discs. We discuss its origins, in particular whether it comes from the inner disc and/or disc surface or from shocks in outflows and jets. Our analysis favours a disc origin, with the observed water vapour line produced within 2-3AU from the central stars, where the gas temperature is of the order of 500-600 K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا