ترغب بنشر مسار تعليمي؟ اضغط هنا

Using a generalized wave matching method we solve the full scattering problem for quantum spin Hall insulator (QSHI) - superconductor (SC) - QSHI junctions. We find that for systems narrow enough so that the bulk states in the SC part couple both edg es, the crossed Andreev reflection (CAR) is significant and the electron cotunneling (T) and CAR become spatially separated. We study the effectiveness of this separation as a function of the system geometry and the level of doping in the SC. Moreover, we show that the spatial separation of both effects allows for an all-electrical measurement of CAR and T separately in a 5-terminal setup or by using the spin selection of the quantum spin Hall effect in an H-bar structure.
167 - M. Guigou , P. Recher , J. Cayssol 2011
We study the spin-dependent transmission through interfaces between a HgTe/CdTe quantum well (QW) and a metal - both for the normal metal and the superconducting case. Interestingly, we discover a new type of spin Hall effect at these interfaces that happens to exist even in the absence of structure and bulk inversion asymmetry within each subsystem (i.e. the QW and the metal). Thus, this is a pure boundary spin Hall effect which can be directly related to the existence of exponentially localized edge states at the interface. We demonstrate how this effect can be measured and functionalized for an all-electric spin injection into normal metal leads.
We analyze theoretically the electronic properties of Aharonov-Bohm rings made of graphene. We show that the combined effect of the ring confinement and applied magnetic flux offers a controllable way to lift the orbital degeneracy originating from t he two valleys, even in the absence of intervalley scattering. The phenomenon has observable consequences on the persistent current circulating around the closed graphene ring, as well as on the ring conductance. We explicitly confirm this prediction analytically for a circular ring with a smooth boundary modelled by a space-dependent mass term in the Dirac equation. This model describes rings with zero or weak intervalley scattering so that the valley isospin is a good quantum number. The tunable breaking of the valley degeneracy by the flux allows for the controlled manipulation of valley isospins. We compare our analytical model to another type of ring with strong intervalley scattering. For the latter case, we study a ring of hexagonal form with lattice-terminated zigzag edges numerically. We find for the hexagonal ring that the orbital degeneracy can still be controlled via the flux, similar to the ring with the mass confinement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا