ترغب بنشر مسار تعليمي؟ اضغط هنا

We test a model recently proposed for the persistent hard X-ray emission from magnetars. In the model, hard X-rays are produced by a decelerating electron-positron flow in the closed magnetosphere. The flow decelerates as it radiates its energy away via resonant scattering of soft X-rays, then it reaches the top of the magnetic loop and annihilates there. We test the model against observations of three magnetars: 4U 0142+61, 1RXS J1708-4009, and 1E 1841-045. We find that the model successfully fits the observed phase-resolved spectra. We derive constraints on the angle between the rotational and magnetic axes of the neutron star, the object inclination to the line of sight, and the size of the active twisted region filled with the plasma flow. Using the fit of the hard X-ray component of the magnetar spectrum, we revisit the remaining soft X-ray component. We find that it can be explained by a modified two-temperature blackbody model. The hotter blackbody is consistent with a hot spot covering 1-10% of the neutron star surface. Such a hot spot is expected at the base of the magnetospheric e+- outflow, as some particles created in the e+- discharge flow back and bombard the stellar surface.
We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119-6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119-6127 shows a single, wide peak offset from the radio peak by 0.43 pm 0.02 in phase. Spectral analysis suggests a power law of index 1.0 pm 0.3 with an energy cut-off at 0.8 pm 0.2 GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119-6127 and demonstrate that despite the objects high surface magnetic field---near that of magnetars---the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gam-ray pulsed emission for the magnetically active PSR J1846-0258 in the supernova remnant Kesteven 75 and two other energetic high-B pulsars, PSRs J1718-3718 and J1734-3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا