ترغب بنشر مسار تعليمي؟ اضغط هنا

76 - A. D. Guclu , P. Potasz , 2013
We present a tight-binding theory of triangular graphene quantum dots (TGQD) with zigzag edge and broken sublattice symmetry in external magnetic field. The lateral size quantization opens an energy gap and broken sublattice symmetry results in a she ll of degenerate states at the Fermi level. We derive a semi-analytical form for zero-energy states in a magnetic field and show that the shell remains degenerate in a magnetic field, in analogy to the 0th Landau level of bulk graphene. The magnetic field closes the energy gap and leads to the crossing of valence and conduction states with the zero-energy states, modulating the degeneracy of the shell. The closing of the gap with increasing magnetic field is present in all graphene quantum dot structures investigated irrespective of shape and edge termination.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا