ترغب بنشر مسار تعليمي؟ اضغط هنا

Over the recent years, the Petersen diagram for classical pulsators, Cepheids and RR Lyr stars, populated with a few hundreds of new multiperiodic variables. We review our analyses of the OGLE data, which resulted in the significant extension of the known, and in the discovery of a few new and distinct forms of multiperiodic pulsation. The showcase includes not only radial mode pulsators, but also radial-non-radial pulsators and stars with significant modulation observed on top of the beat pulsation. First theoretical models explaining the new forms of stellar variability are briefly discussed.
We analyse the OGLE-IV photometry of the first overtone and double-mode RR Lyrae stars (RRc/RRd) in the two fields towards the Galactic bulge observed with high cadence. In 27 per cent of RRc stars we find additional non-radial mode, with characteris tic period ratio, P x /P 1O in (0.6, 0.64). It strongly corroborates the conclusion arising from the analysis of space photometry of RRc stars, that this form of pulsation must be common. In the Petersen diagram the stars form three sequences. In 20 stars we find two or three close secondary modes simultaneously. The additional modes are clearly non-stationary. Their amplitude and/or phase vary in time. As a result, the patterns observed in the frequency spectra of these stars may be very complex. In some stars the additional modes split into doublets, triplets or appear as a more complex bands of increased power. Subharmonics of additional modes are detected in 20 per cent of stars. They also display a complex structure. Including our previous study of the OGLE-III Galactic bulge data, we have discovered 260 RRc and 2 RRd stars with the additional non-radial mode, which is the largest sample of these stars so far. The additional mode is also detected in two Blazhko RRc stars, which shows that the modulation and additional non-radial mode are not exclusive.
We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f_2 has an amp litude of a few mmag, 20 - 45 times lower than the main radial mode with frequency f_1. The two oscillations have a period ratio of P_2/P_1 = 0.612 - 0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is nonradial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P_2/P_1 ~ 0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f_2 at ~1/2 f_2 and at ~3/2 f_2. This is a signature of period doubling of the secondary oscillation, and is the first detection of period doubling in RRc stars. The amplitudes and phases of f_2 and its subharmonics are variable on a timescale of 10 - 200d. The dominant radial mode also shows variations on the same timescale, but with much smaller amplitude. In three Kepler RRc stars we detect additional periodicities, with amplitudes below 1mmag, that must correspond to nonradial g-modes. Such modes never before have been observed in RR Lyrae variables.
Non-radial modes are excited in classical pulsators, both in Cepheids and in RR Lyrae stars. Firm evidence come from the first overtone pulsators, in which additional shorter period mode is detected with characteristic period ratio falling in between 0.60 and 0.65. In the case of first overtone Cepheids three separate sequences populated by nearly 200 stars are formed in the Petersen diagram, i.e. the diagram of period ratio versus longer period. In the case of first overtone RR Lyrae stars (RRc stars) situation is less clear. A dozen or so such stars are known which form a clump in the Petersen diagram without any obvious structure. Interestingly, all first overtone RR Lyrae stars for which precise space-borne photometry is available show the additional mode, which suggests that its excitation is common. Motivated by these results we searched for non-radial modes in the OGLE-III photometry of RRc stars from the Galactic bulge. We report the discovery of 147 stars, members of a new group of double-mode, radial-non-radial mode pulsators. They form a clear and tight sequence in the Petersen diagram, with period ratios clustering around 0.613 with a signature of possible second sequence with higher period ratio (0.631). The scatter in period ratios of the already known stars is explained as due to population effects. Judging from the results of space observations this still mysterious form of pulsation must be common among RRc stars and with our analysis of the OGLE data we just touch the tip of the iceberg.
We analyzed the Long Cadence photometry of 4 first overtone RR Lyr-type stars (RRc stars) observed by the KEPLER telescope. All studied variables are multiperiodic. The strongest secondary peak appears for f_2/f_1 = 1.58-1.63, or P_2/P_1 = 0.61-0.63. In each star we detect at least one subharmonic of f_2, either at ~1/2 f_2 or at ~3/2 f_2. The presence of subharmonics is a characteristic signature of a period doubling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا