ترغب بنشر مسار تعليمي؟ اضغط هنا

We present adaptive mesh refinement (AMR) hydrodynamical simulations of the interaction between Type Ia supernovae and their companion stars within the context of the single-degenerate model. Results for 3D red-giant companions without binary evoluti on agree with previous 2D results by Marietta et al. We also consider evolved helium-star companions in 2D. For a range of helium-star masses and initial binary separations, we examine the mass unbound by the interaction and the kick velocity delivered to the companion star. We find that unbound mass versus separation obeys a power law with index between -3.1 and -4.0, consistent with previous results for hydrogen-rich companions. Kick velocity also obeys a power-law relationship with binary separation, but the slope differs from those found for hydrogen-rich companions. Assuming accretion via Roche-lobe overflow, we find that the unbound helium mass is consistent with observational limits. Ablation (shock heating) appears to be more important in removing gas from helium-star companions than from hydrogen-rich ones, though stripping (momentum transfer) dominates in both cases.
44 - H.-Y. Yang 2009
Using a hydrodynamics plus N-body simulation of galaxy cluster formation within a large volume and mock Chandra X-ray observations, we study the form and evolution of the intrinsic scatter about the best-fit X-ray temperature-mass relation for cluste rs. We investigate the physical origin of the scatter by correlating it with quantities that are closely related to clusters formation and merging histories. We also examine the distribution of the scatter for merging and nonmerging populations, identified using halo merger trees derived from the simulation as well as X-ray substructure measures. We find a strong correlation between the scatter in the M-T_X relation and the halo concentration, in the sense that more concentrated clusters tend to be cooler than clusters with similar masses. No bias is found between the merging and relaxed clusters, but merging clusters generally have greater scatter, which is related to the properties of the distribution of halo concentrations. We also detect a signature of non-lognormality in the distribution of scatter for our simulated clusters both at z=0 and at z=1. A detailed comparison of merging clusters identified by substructure measures and by halo merger trees is given in the discussion. We conclude that, when cooling-related effects are neglected, the variation in halo concentrations is a more important factor for driving the intrinsic scatter in the M-T_X relation, while departures from hydrostatic equilibrium due to cluster mergers have a minor effect.
59 - P. M. Ricker 2007
We describe a finite-volume method for solving the Poisson equation on oct-tree adaptive meshes using direct solvers for individual mesh blocks. The method is a modified version of the method presented by Huang and Greengard (2000), which works with finite-difference meshes and does not allow for shared boundaries between refined patches. Our algorithm is implemented within the FLASH code framework and makes use of the PARAMESH library, permitting efficient use of parallel computers. We describe the algorithm and present test results that demonstrate its accuracy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا