ترغب بنشر مسار تعليمي؟ اضغط هنا

The interaction between a single hole and a two-dimensional, paramagnetic, homogeneous electron gas is studied using diffusion quantum Monte Carlo simulations. Calculations of the electron-hole correlation energy, pair-correlation function, and the e lectron-hole center-of-mass momentum density are reported for a range of electron--hole mass ratios and electron densities. We find numerical evidence of a crossover from a collective Mahan exciton to a trion-dominated state in a density range in agreement with that found in recent experiments on quantum well heterostructures.
An inhomogeneous backflow transformation for many-particle wave functions is presented and applied to electrons in atoms, molecules, and solids. We report variational and diffusion quantum Monte Carlo VMC and DMC energies for various systems and stud y the computational cost of using backflow wave functions. We find that inhomogeneous backflow transformations can provide a substantial increase in the amount of correlation energy retrieved within VMC and DMC calculations. The backflow transformations significantly improve the wave functions and their nodal surfaces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا