ترغب بنشر مسار تعليمي؟ اضغط هنا

A Cerium Fluoride crystal produced during early R&D studies for calorimetry at the CERN Large Hadron Collider was exposed to a 24 GeV/c proton fluence Phi_p=(2.78 +- 0.20) x 10EE13 cm-2 and, after one year of measurements tracking its recovery, to a fluence Phi_p=(2.12 +- 0.15) x 10EE14 cm-2. Results on proton-induced damage to the crystal and its spontaneous recovery after both irradiations are presented here, along with some new, complementary data on proton-damage in Lead Tungstate. A comparison with FLUKA Monte Carlo simulation results is performed and a qualitative understanding of high-energy damage mechanism is attempted.
A Lead Tungstate crystal produced for the electromagnetic calorimeter of the CMS experiment at the LHC was cut into three equal-length sections. The central one was irradiated with 290 MeV/c positive pions up to a fluence of (5.67 +- 0.46)x10^13 /cm^ 2, while the other two were exposed to a 24 GeV/c proton fluence of (1.17 +- 0.11) x 10^13/ cm^2. The damage recovery in these crystals, stored in the dark at room temperature, has been followed over two years. The comparison of the radiation-induced changes in light transmission for these crystals shows that damage is proportional to the star densities produced by the irradiation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا