ترغب بنشر مسار تعليمي؟ اضغط هنا

Context: Several hundred candidate hybrid pulsators of type A-F have been identified from space-based observations. Their large number allows both statistical analyses and detailed investigations of individual stars. This offers the opportunity to st udy the full interior of the genuine hybrids, in which both low-radial-order p- and high-order g-modes are self-excited at the same time. However, a few other physical processes can also be responsible for the observed hybrid nature, related to binarity or to surface inhomogeneities. The finding that most delta Scuti stars also show long-period light variations represents a real challenge for theory. Methods: Fourier analysis of all the available Kepler light curves. Investigation of the frequency and period spacings. Determination of the stellar physical parameters from spectroscopic observations. Modelling of the transit events. Results: The Fourier analysis of the Kepler light curves revealed 55 significant frequencies clustered into two groups, which are separated by a gap between 15 and 27 c/d. The light variations are dominated by the beating of two dominant frequencies located at around 4 c/d. The amplitudes of these two frequencies show a monotonic long-term trend. The frequency spacing analysis revealed two possibilities: the pulsator is either a highly inclined moderate rotator (v~70 km/s, i > 70 deg) or a fast rotator (v~200 km/s) with i~20 deg. The transit analysis disclosed that the transit events which occur with a ~197 c/d period may be caused by a 1.6 R_Jup body orbiting a fainter star, which would be spatially coincident with KIC 9533489.
We used high-quality Kepler photometry and spectroscopic data to investigate the Kepler binary candidate KIC 5988140. Using the spectrum synthesis method, we derived the fundamental parameters Teff, log g, [M/H], and v.sini and the abundances. Freque ncy analyses of both the photometric and the spectroscopic data were performed, revealing the same two dominant frequencies (F_1=0.688 and F_2=0.344 c/d). We also detected in the photometry the signal of nine more, significant frequencies located in the typical range of Delta Scuti pulsation. The light and radial velocity curves follow a similar, stable double-wave pattern which are not exactly in anti-phase but show a relative phase shift of about 0.1 period between the moment of minimum velocity and that of maximum light. We considered three different scenarios: binarity, co-existence of both Gamma Doradus and Delta Scuti pulsations and rotation of the stellar surface with an axisymmetric intensity distribution. However, none of these scenarios is capable of explaining all of the characteristics of the observed variations. We confirm the occurrence of various independent Delta Scuti-type pressure modes in the Kepler light curve. With respect to the low-frequency content, however, we argue that the physical cause of the remaining light and radial velocity variations of this late A-type star remains unexplained by any of the presently considered scenarios.
We present the results of a multi-site photometric campaign carried out in 2004-2008 for the Algol-type eclipsing binary system CT Her, the primary component of which shows Delta Scuti-type oscillations. Our data consist of differential light curves collected in the filters B and V which have been analysed using the method of Wilson-Devinney (PHOEBE). After identification of an adequate binary model and removal of the best-matching light curve solution, we performed a Fourier analysis of the residual B and V light curves to investigate the pulsational behaviour. We confirm the presence of rapid pulsations with a main period of 27.2 min. Up to eight significant frequencies with semi-amplitudes in the range 3 to 1 mmag were detected, all of which surprisingly lie in the frequency range 43.5-53.5 cd. This result is independent from the choice of the primarys effective temperature (8200 or 8700 K) since the light curve models for the binary are very similar in both cases. This is yet another case of a complex frequency spectrum observed for an accreting Delta Scuti-type star (after Y Cam). In addition, we demonstrate that the amplitudes of several of these pulsation frequencies show evidence of variability on time scales as short as 1-2 years, perhaps even less. Moreover, our analysis takes into account some recently acquired spectra, from which we obtained the corresponding radial velocities for the years 2007-2009. Investigation of the O-C diagram shows that further monitoring of the epochs of eclipse minima of CT Her will cast a new light on the evolution of its orbital period.
Theta^2 Tauri is a detached and single-lined interferometric-spectroscopic binary as well as the most massive binary system of the Hyades cluster. The system revolves in an eccentric orbit with a periodicity of 140.7 days. The secondary has a similar temperature but is less evolved and fainter than the primary. It is also rotating more rapidly. Since the composite spectra are heavily blended, the direct extraction of radial velocities over the orbit of component B was hitherto unsuccessful. Using high-resolution spectroscopic data recently obtained with the Elodie (OHP, France) and Hermes (ORM, La Palma, Spain) spectrographs, and applying a spectra disentangling algorithm to three independent data sets including spectra from the Oak Ridge Observatory (USA), we derived an improved spectroscopic orbit and refined the solution by performing a combined astrometric-spectroscopic analysis based on the new spectroscopy and the long-baseline data from the Mark III optical interferometer. As a result, the velocity amplitude of the fainter component is obtained in a direct and objective way. Major progress based on this new determination includes an improved computation of the orbital parallax. Our mass ratio is in good agreement with the older estimates of Peterson et al. (1991, 1993), but the mass of the primary is 15-25% higher than the more recent estimates by Torres et al. (1997) and Armstrong et al. (2006). Due to the strategic position of the components in the turnoff region of the cluster, these new determinations imply stricter constraints for the age and the metallicity of the Hyades cluster. The location of component B can be explained by current evolutionary models, but the location of the more evolved component A is not trivially explained and requires a detailed abundance analysis of its disentangled spectrum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا