ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic structure of InAs quantum dots covered with the GaAs(1-y)Sb(y) strain reducing layer has been studied using the k.p theory. We explain previous experimental observations of the red shift of the photoluminescence emission with increasin g y and its blue shift with increasing excitation power. For y>0.19 type-II dots are formed with holes localized in the GaAsSb close to the dot base; two segments at opposite sides of the dot, forming molecular-like states, result from the piezoelectric field. We also propose an experiment that could be used to identify the hole localization using a vertical electric field.
The pumping intensity (I) dependence of the photoluminescence (PL) spectra of perfectly laterally two-dimensionally ordered SiGe quantum dots on Si(001) substrates was studied. The PL results from recombinations of holes localized in the SiGe quantum dots and electrons localized due to the strain field in the surrounding Si matrix. The analysis of the spectra revealed several distinct bands, attributed to phonon-assisted recombination and no-phonon recombination of the excitonic ground state and of the excited excitonic states, which all exhibit a linear I dependence of the PL intensity. At approximately I>3W/cm^2, additional bands with a nearly quadratic I dependence appear in the PL spectra, resulting from biexcitonic transitions. These emerging PL contributions shift the composite no-phonon PL band of the SiGe quantum dots to higher energies. The experimentally obtained energies of the no-phonon transitions are in good agreement with the exciton and biexciton energies calculated using the envelope function approximation and the configuration interaction method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا