ترغب بنشر مسار تعليمي؟ اضغط هنا

The zCOSMOS-bright 10k spectroscopic sample reveals a strong environmental dependence of close kinematic galaxy pair fractions in the redshift range 0.2 < z < 1. The fraction of close pairs is three times higher in the top density quartile than in th e lowest one. This environmental variation in pair fractions will translate into merger fractions since merger timescales are shown, based on Millennium simulation catalogs, to be largely independent of environment. While galactic properties of close kinematic pairs (morphologies and star formation rates) may seem to be non-representative of an underlying galaxy population, they can be explained by taking into account well-known effects of environment, and changes caused by interactions. The latter is responsible for an increase of irregular galaxies in pairs by a factor of 50-75%, with a disproportionate increase in the number of irregular-irregular pairs (4-8 times), due to disturbance of about 15% of the disk galaxies in pairs. Another sign of interaction is an observed boost in specific star formation rate (factor 2-4) for the closest pairs. While significant for paired galaxies, this triggered star-formation due to interactions represents only about 5% of the integrated star-formation activity in our volume-limited sample. Although majority of close kinematic pairs are in dense environments, the effects of interactions appear to be strongest in the lower density environments. This may introduce strong biases into observational studies of mergers, especially those based on morphological criteria. Relative excess of post-starburst galaxies observed in paired galaxies (factor sim2) as well as excess of AGNs (factor of over 2), linked with environmental dependence of the pair fractions could indicate that early phases of interactions and merging are plausible candidates for environmental quenching, observed in the global galaxy populations.
(Abridged) We analyze the environments and galactic properties (morphologies and star-formation histories) of a sample of 153 close kinematic pairs in the redshift range 0.2 < z < 1 identified in the zCOSMOS-bright 10k spectroscopic sample of galaxie s. Correcting for projection effects, the fraction of close kinematic pairs is three times higher in the top density quartile than in the lowest one. This translates to a three times higher merger rate because the merger timescales are shown, from mock catalogues based on the Millennium simulation, to be largely independent of environment once the same corrections for projection is applied. We then examine the morphologies and stellar populations of galaxies in the pairs, comparing them to control samples that are carefully matched in environment so as to remove as much as possible the well-known effects of environment on the properties of the parent population of galaxies. Once the environment is properly taken into account in this way, we find that the early-late morphology mix is the same as for the parent population, but that the fraction of irregular galaxies is boosted by 50-75%, with a disproportionate increase in the number of irregular-irregular pairs (factor of 4-8 times), due to the disturbance of disk galaxies. Future dry-mergers, involving elliptical galaxies comprise less than 5% of all close kinematic pairs. In the closest pairs, there is a boost in the specific star-formation rates of star-forming galaxies of a factor of 2-4, and there is also evidence for an increased incidence of post star-burst galaxies. Although significant for the galaxies involved, the excess star-formation associated with pairs represents only about 5% of the integrated star-formation activity in the parent sample. Although most pair galaxies are in dense environments, the effects of interaction appear to be largest in the lower density environments.
The contribution of major mergers to galaxy mass assembly along cosmic time is an important ingredient to the galaxy evolution scenario. We aim to measure the evolution of the merger rate for both luminosity/mass selected galaxy samples and investiga te its dependence with the local environment. We use a sample of 10644 spectroscopically observed galaxies from the zCOSMOS redshift survey to identify pairs of galaxies destined to merge, using only pairs for which the velocity difference and projected separation of both components with a confirmed spectroscopic redshift indicate a high probability of merging. We have identified 263 spectroscopically confirmed pairs with r_p^{max} = 100 h^{-1} kpc. We find that the density of mergers depends on luminosity/mass, being higher for fainter/less massive galaxies, while the number of mergers a galaxy will experience does not depends significantly on its intrinsic luminosity but rather on its stellar mass. We find that the pair fraction and merger rate increase with local galaxy density, a property observed up to redshift z=1. We find that the dependence of the merger rate on the luminosity or mass of galaxies is already present up to redshifts z=1, and that the evolution of the volumetric merger rate of bright (massive) galaxies is relatively flat with redshift with a mean value of 3*10^{-4} (8*10^{-5} respectively) mergers h^3 Mpc^{-3} Gyr^{-1}. The dependence of the merger rate with environment indicates that dense environments favors major merger events as can be expected from the hierarchical scenario. The environment therefore has a direct impact in shapping-up the mass function and its evolution therefore plays an important role on the mass growth of galaxies along cosmic time.
We compare the surface brightness-inclination relation for a sample of COSMOS pure disk galaxies at z~0.7 with an artificially redshifted sample of SDSS disks well matched to the COSMOS sample in terms of rest-frame photometry and morphology, as well as their selection and analysis. The offset between the average surface brightness of face-on and edge-on disks in the redshifted SDSS sample matches that predicted by measurements of the optical depth of galactic disks in the nearby universe. In contrast, large disks at z~0.7 have a virtually flat surface brightness-inclination relation, suggesting that they are more opaque than their local counterparts. This could be explained by either an increased amount of optically thick material in disks at higher redshift, or a different spatial distribution of the dust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا