ترغب بنشر مسار تعليمي؟ اضغط هنا

100 - P. K. G. Williams 2014
We present multi-epoch simultaneous radio, optical, H{alpha}, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 $pm$ 0.0001 and 3.7130 $pm$ 0.0002 hr. While these differ by only ~2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The systems radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational campaign. We interpret the last of these as a gyrosynchrotron feature associated with large-scale magnetic fields and a cool, equatorial plasma torus. However, the persistent rapid flares at all rotational phases imply that small-scale magnetic loops are also present and reconnect nearly continuously. We present an SED of the blended system spanning more than 9 orders of magnitude in wavelength. The significant magnetism present in NLTT 33370 AB will affect its fundamental parameters, with the components radii and temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we suggest spatially resolved observations that could clarify many aspects of this systems nature.
Observations of magnetic activity indicators in solar-type stars exhibit a relationship with rotation with an increase until a saturation level and a moderate decrease in activity in the very fastest rotators (supersaturation). While X-ray data have suggested that this relationship is strongly violated in ultracool dwarfs (UCDs; spectral type >M7), the limited number of X-ray detections has prevented firm conclusions. In this paper, we analyze the X-ray activity-rotation relation in 38 ultracool dwarfs. Our sample represents the largest catalog of X-ray active ultracool dwarfs to date, including seven new and four previously-unpublished Chandra observations presented in a companion paper. We identify a substantial number of rapidly-rotating UCDs with X-ray activity extending two orders of magnitude below the expected saturation level and measure a supersaturation-type anticorrelation between rotation and X-ray activity. The scatter in UCD X-ray activity at a fixed rotation is ~3 times larger than that in earlier-type stars. We discuss several mechanisms that have been proposed to explain the data, including centrifugal stripping of the corona, and find them to be inconsistent with the observed trends. Instead, we suggest that an additional parameter correlated with both X-ray activity and rotation is responsible for the observed effects. Building on the results of Zeeman-Doppler imaging of UCD magnetic fields and our companion study of radio/X-ray flux ratios, we argue that this parameter is the magnetic field topology, and that the large scatter in UCD X-ray fluxes reflects the presence of two dynamo modes that produce distinct topologies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا