ترغب بنشر مسار تعليمي؟ اضغط هنا

Near infrared pump-probe spectroscopy has been used to measure the ultrafast dynamics of photoexcited charge carriers in monolayer and multilayer graphene. We observe two decay processes occurring on 100 fs and 2 ps timescales. The first is attribute d to the rapid electron-phonon thermalisation in the system. The second timescale is found to be due to the slow decay of hot phonons. Using a simple theoretical model we calculate the hot phonon decay rate and show that it is significantly faster in monolayer flakes than in multilayer ones. In contrast to recent claims, we show that this enhanced decay rate is not due to the coupling to substrate phonons, since we have also seen the same effect in suspended flakes. Possible intrinsic decay mechanisms that could cause such an effect are discussed.
We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high third-order optical nonlinearity which is practically indepe ndent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا