ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniquely in Cu2OSeO3, the Skyrmions, which are topologically protected magnetic spin vortex-like objects, display a magnetoelectric coupling and can be manipulated by externally applied electric (E) fields. Here, we explore the E-field coupling to th e magnetoelectric Skyrmion lattice phase, and study the response using neutron scattering. Giant E-field induced rotations of the Skyrmion lattice are achieved that span a range of $sim$25$^{circ}$. Supporting calculations show that an E-field-induced Skyrmion distortion lies behind the lattice rotation. Overall, we present a new approach to Skyrmion control that makes no use of spin-transfer torques due to currents of either electrons or magnons.
108 - W. P. Huang , Z. B. Tang , C. Li 2014
The water Cherenkov detector array (WCDA) for the large high altitude air shower observatory(LHAASO) will employ more than 3600 hemisphere 8 inch photomultiplier tubes (PMT). The good time performance of PMT, especially the transit time spread (TTS), is required for WCDA. TTS is usually defined as the TTS of single photoelectron, and usually determined by using single photoelectron counting technique. A method using the photoelectron spectrum is researched for the measurement of TTS. The method is appropriate for multi-photoelectrons and makes it possible to measure the TTS of different photoelectrons at the same time. The TTS of different photoelectrons is measured for Hamamatsu R5912 with the divider circuit designed in specifically. The TTS of single photoelectron is determined to 3.3 ns and satisfies the requirement of WCDA.
We propose a scheme for a two-qubit conditional phase gate by quantum Zeno effect with semiconductor quantum dots. The system consists of two charged dots and one ancillary dot that can perform Rabi oscillations under a resonant laser pulse. The quan tum Zeno effect is induced by phonon-assisted exciton relaxation between the ancillary dot and the charged dots, which is equivalent to a continuous measurement. We solve analytically the master equation and simulate the dynamics of the system using a realistic set of parameters. In contrast to standard schemes, larger phonon relaxation rates increase the fidelity of the operations.
114 - G.-P. Tong , Q.-P. Huang 2008
The hybrid orbitals of single-wall carbon nanotubes are given according to the structure of the nanotube. Because the energy levels of these hybrid orbitals are close to each other, the sigma-orbitals will affect the behavior of the pi-electrons, whi ch is called the scattering of pi- electrons. This scattering effect is taken into account in the nanotube and the local wave function of pi-electrons is constructed, which is called the extended Wannier function. In the Wannier representation, the electronic hopping energies and the energy gap of the tubes (9,0) and (9,9) are calculated. Our results show that the band gap of the tubes increases in direct ratio with the scattering coefficients of sigma-orbitals and this scattering is able to enhance the localization of pi-electrons.
356 - Y. P. Huang , M. G. Moore 2008
A Mach-Zender interferometer with a gaussian number-difference squeezed input state can exhibit sub-shot-noise phase resolution over a large phase-interval. We obtain the optimal level of squeezing for a given phase-interval $Deltatheta_0$ and partic le number $N$, with the resulting phase-estimation uncertainty smoothly approaching $3.5/N$ as $Deltatheta_0$ approaches 10/N, achieved with highly squeezed states near the Fock regime. We then analyze an adaptive measurement scheme which allows any phase on $(-pi/2,pi/2)$ to be measured with a precision of $3.5/N$ requiring only a few measurements, even for very large $N$. We obtain an asymptotic scaling law of $Deltathetaapprox (2.1+3.2ln(ln(N_{tot}tanDeltatheta_0)))/N_{tot}$, resulting in a final precision of $approx 10/N_{tot}$. This scheme can be readily implemented in a double-well Bose-Einstein condensate system, as the optimal input states can be obtained by adiabatic manipulation of the double-well ground state.
187 - Y. P. Huang , M. G. Moore 2008
The problem of on-demand generation of entanglement between single-atom qubits via a common photonic channel is examined within the framework of optical interferometry. As expected, for a Mach-Zehnder interferometer with coherent laser beam as input, a high-finesse optical cavity is required to overcome sensitivity to spontaneous emission. We show, however, that with a twin-Fock input, useful entanglement can in principle be created without cavity-enhancement. Both approaches require single-photon resolving detectors, and best results would be obtained by combining both cavity-feedback and twin-Fock inputs. Such an approach may allow a fidelity of $.99$ using a two-photon input and currently available mirror and detector technology. In addition, we study interferometers based on NOON states and show that they perform similarly to the twin-Fock states, yet without the need for high-precision photo-detectors. The present interferometrical approach can serve as a universal, scalable circuit element for quantum information processing, from which fast quantum gates, deterministic teleportation, entanglement swapping $etc.$, can be realized with the aid of single-qubit operations.
165 - Y. P. Huang , M. G. Moore 2007
This paper has been withdrawn. It is based on numerical results limited by computing resources to N=3000 atoms. Using a newly understood geometric method we find that the observed scaling with N saturates at around N=7000 or even higher. In light of this new finding we withdraw the paper and will submit a revised manuscript reflecting our new understanding.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا