ترغب بنشر مسار تعليمي؟ اضغط هنا

102 - N. Labrosse 2010
This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibri um) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.
68 - P. Heinzel 2007
Solar prominences and filaments (prominences projected against the solar disk) exhibit a large variety of fine structures which are well observed down to the resolution limit of ground-based telescopes. We describe the morphological aspects of these fine structures which basically depend on the type of a prominence (quiescent or active-region). Then we review current theoretical scenarios which are aimed at explaining the nature of these structures. In particular we discuss in detail the relative roles of magnetic pressure and gas pressure (i.e., the value of the plasma-beta), as well as the dynamical aspects of the fine structures. Special attention is paid to recent numerical simulations which include a complex magnetic topology, energy balance (heating and cooling processes), as well as the multidimensional radiative transfer. Finally, we also show how new ground-based and space observations can reveal various physical aspects of the fine structures including their prominence-corona transition regions in relation to the orientation of the magnetic field.
We present non-LTE diagnostics of the filament observed by SOHO/SUMER on May 27, 2005 in the whole Lyman series. The filament was situated close to the disk center. The Ly_alpha observations were carried out with normal voltage of detector A. The sli t was placed at the central part of the detector -- outside the Ly_alpha attenuator. Therefore, the observed profiles of this line could be calibrated reliably.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا