ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundances of galaxies at redshifts z > 4 are difficult to obtain from damped Ly {alpha} (DLA) systems in the sightlines of quasars (QSOs) due to the Ly {alpha} forest blanketing and the low number of high-redshift quasars detected. Gamma-ray bursts (GRBs) with their higher luminosity are well suited to study galaxies out to the formation of the first stars at z > 10. Its large wavelength coverage makes the X-shooter spectrograph an excellent tool to study the interstellar medium (ISM) of high redshift galaxies, in particular if the redshift is not known beforehand. Here we determine the properties of a GRB host at z = 4.66723 from a number of resonant low- and high ionization and fine-structure absorption lines. This is one of the highest redshifts where a detailed analysis with medium-resolution data has been possible. We detect one intervening system at z = 2.18. The velocity components of the absorption lines are fitted with Voigt-profiles and we determine a metallicity of [M/H] = -1.0 pm 0.1 using S. The absorption lines show a complicated kinematic structure which could point to a merger in progress. Si II* together with the restframe UV energy release determined from GROND data gives us the distance of 0.3 to 1 kpc of the absorbing material from the GRB. We measure a low extinction of AV = 0.24 pm 0.06 mag using X-ray spectral information and the flux calibrated X-shooter spectrum. GRB-DLAs have a shallower evolution of metallicity with redshift than QSO absorbers and no evolution in HI column density or ionization fraction. GRB hosts at high redshift might continue the trend towards lower metallicities in the LZ-relation with redshift, but the sample is still too small to draw a definite conclusion. While the detection of GRBs at z > 4 with current satellites is still difficult, they are very important for our understanding of the early epochs of star- and galaxy-formation.
Context. X-shooter is the first second-generation instrument to become operative at the ESO Very Large Telescope (VLT). It is a broad-band medium-resolution spectrograph designed with gamma-ray burst (GRB) afterglow spectroscopy as one of its main sc ience drivers. Aims. During the first commissioning night on sky with the instrument fully assembled, X-shooter observed the afterglow of GRB 090313 as a demonstration of the instruments capabilities. Methods. GRB 090313 was observed almost two days after the burst onset, when the object had already faded to R~21.6. Furthermore, the 90% illuminated Moon was just 30 degrees away from the field. In spite of the adverse conditions, we obtained a spectrum that, for the first time in GRB research, covers simultaneously the range from 5700 to 23000 Angstroms. Results. The spectrum shows multiple absorption features at a redshift of 3.3736, the redshift of the GRB. These features are composed of 3 components with different ionisation levels and velocities. Some of the features have never been observed before in a GRB at such a high redshift. Furthermore, we detect two intervening systems at redshifts of 1.8005 and 1.9597. Conclusions. These results demonstrate the potential of X-shooter in the GRB field, as it was capable of observing a GRB down to a magnitude limit that would include 72% of long GRB afterglows 2 hours after the burst onset. Coupled with the rapid response mode available at VLT, allowing reaction times of just a few minutes, X-shooter constitutes an important leap forward on medium resolution spectroscopic studies of GRBs, their host galaxies and intervening systems, probing the early history of the Universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا