ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the observation of the fractional quantum Hall effect in the lowest Landau level of a two-dimensional electron system (2DES), residing in the diluted magnetic semiconductor Cd(1-x)Mn(x)Te. The presence of magnetic impurities results in a gi ant Zeeman splitting leading to an unusual ordering of composite fermion Landau levels. In experiment, this results in an unconventional opening and closing of fractional gaps around filling factor v = 3/2 as a function of an in-plane magnetic field, i.e. of the Zeeman energy. By including the s-d exchange energy into the composite Landau level spectrum the opening and closing of the gap at filling factor 5/3 can be modeled quantitatively. The widely tunable spin-splitting in a diluted magnetic 2DES provides a novel means to manipulate fractional states.
152 - P. Giudici , K. Muraki , N. Kumada 2010
We investigate the quasiparticle excitation of the bilayer quantum Hall (QH) system at total filling factor $ u_{mathrm{T}} = 1$ in the limit of negligible interlayer tunneling under tilted magnetic field. We show that the intrinsic quasiparticle exc itation is of purely pseudospin origin and solely governed by the inter- and intra-layer electron interactions. A model based on exciton formation successfully explains the quantitative behavior of the quasiparticle excitation gap, demonstrating the existence of a link between the excitonic QH state and the composite fermion liquid. Our results provide a new insight into the nature of the phase transition between the two states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا