ترغب بنشر مسار تعليمي؟ اضغط هنا

The association of Type Ic SNe with long-duration GRBs is well established. We endeavor, through accurate ground-based observational campaigns, to characterize these SNe at increasingly high redshifts. We obtained a series of optical photometric and spectroscopic observations of the Type Ic SN2012bz associated with the Swift long-duration GRB120422A (z=0.283) using the 3.6-m TNG and the 8.2-m VLT telescopes. The peak times of the light curves of SN2012bz in various optical filters differ, with the B-band and i-band light curves reaching maximum at ~9 and ~23 rest-frame days, respectively. The bolometric light curve has been derived from individual bands photometric measurements, but no correction for the unknown contribution in the near-infrared (probably around 10-15%) has been applied. Therefore, the present light curve should be considered as a lower limit to the actual UV-optical-IR bolometric light curve. This pseudo-bolometric curve reaches its maximum (Mbol = -18.56 +/- 0.06) at 13 +/- 1 rest-frame days; it is similar in shape and luminosity to the bolometric light curves of the SNe associated with z<0.2 GRBs and more luminous than those of SNe associated with XRFs. A comparison with the model generated for the bolometric light curve of SN2003dh suggests that SN2012bz produced only about 15% less 56Ni than SN2003dh, about 0.35 Msol. Similarly the VLT spectra of SN2012bz, after correction for Galactic extinction and for the contribution of the host galaxy, suggest comparable explosion parameters with those observed in SN2003dh (EK~3.5 x 10^52 erg, Mej~7 Msol) and a similar progenitor mass (~25-40 Msol). GRB120422A is consistent with the Epeak-Eiso and the EX,iso-Egamma,iso-E_peak relations. GRB120422A/SN2012bz shows the GRB-SN connection at the highest redshift so far accurately monitored both photometrically and spectroscopically.
75 - A. Rossi , S. Klose , P. Ferrero 2012
Gamma-Ray Bursts can provide information about star formation at high redshifts. Even in the absence of a optical/near-infrared/radio afterglow, the high detection rate of X-ray afterglows by swift/XRT and its localization precision of 2-3 arcsec fac ilitates the identification and study of GRB host galaxies. We focus on the search for the host galaxies of a sample of 17 bursts with XRT error circles but no detected long-wavelength afterglow. Three of these events can also be classified as truly dark bursts: the observed upper limit on the optical flux of the afterglow was less than expected based on the X-ray flux. Our study is based on deep R and K-band observations performed with ESO/VLT instruments, supported by GROND and NEWFIRM. To be conservative, we searched for host galaxies in an area with a radius twice the 90% swift/XRT error circle. For 15 of the 17 bursts we find at least one galaxy inside the doubled XRT error circle. In seven cases we discover extremely red objects in the error circles. The most remarkable case is the host of GRB 080207 which as a colour of R-K~4.7 mag (AB), one of the reddest galaxies ever associated with a GRB. As a by-product of our study we identify the optical afterglow of GRB 070517A. Optically dim afterglows result from cosmological Lyman drop out and dust extinction, but the former process is only equired for a minority of cases (<1/3). Extinction by dust in the host galaxies might explain all other events. Thereby, a seemingly non-negligible fraction of these hosts are globally dust-enshrouded, extremely red galaxies. This suggests that bursts with optically dim afterglows trace a subpopulation of massive starburst galaxies, which are markedly different from the main body of the GRB host galaxy population, namely the blue, subluminous, compact galaxies.
Aims: The AGILE gamma-ray burst GRB 080514B is the first burst with detected emission above 30 MeV and an optical afterglow. However, no spectroscopic redshift for this burst is known. Methods: We compiled ground-based photometric optical/NIR and m illimeter data from several observatories, including the multi-channel imager GROND, as well as ultraviolet swift UVOT and X-ray XRT observations. The spectral energy distribution of the optical/NIR afterglow shows a sharp drop in the swift UVOT UV filters that can be utilized for the estimation of a redshift. Results: Fitting the SED from the swift UVOT $uvw2$ band to the $H$ band, we estimate a photometric redshift of $z=1.8^{+0.4}_{-0.3}$, consistent with the pseudo redshift reported by Pelangeon & Atteia (2008) based on the gamma-ray data. Conclusions: The afterglow properties of GRB 080514B do not differ from those exhibited by the global sample of long bursts, supporting the view that afterglow properties are basically independent of prompt emission properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا