ترغب بنشر مسار تعليمي؟ اضغط هنا

The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of magnetization and the specific loss power in magnetic nanoparticles with uniaxial anisotropy driven by a rotating magnetic field. We propose a n ew type of applied field, which is simultaneously rotating and alternating, i.e. the direction of the rotating external field changes periodically. We show that a more efficient heat generation by magnetic nanoparticles is possible with this new type of applied field and we suggest its possible experimental realization in cancer therapy which requires the enhancement of loss energies.
The numerous phenomenological equations used in the study of the behaviour of single-domain magnetic nanoparticles are described and some issues clarified by means of qualitative comparison. To enable a quantitative textit{application} of the model b ased on the Debye (exponential) relaxation and the torque driving the Larmor precession, we present analytical solutions for the steady states in presence of circularly and linearly polarized AC magnetic fields. Using the exact analytical solutions, we can confirm the insight that underlies Rosensweigs introduction of the chord susceptibility for an approximate calculation of the losses. As an important consequence, it can also explain experiments, where power dissipation for both fields were found to be identical in root mean square sense. We also find that this approximation provides satisfactory numerical accuracy only up to magnetic fields for which the argument of the Langevin function reaches the value 2.8.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا