ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on an X-ray observation of the Be X-ray Binary Pulsar RX J0059.2-7138, performed by XMM-Newton in March 2014. The 19 ks long observation was carried out about three months after the discovery of the latest outburst from this Small Magellani c Cloud transient, when the source luminosity was Lx ~ 10$^{38}$ erg/s. A spin period of P=2.762383(5) s was derived, corresponding to an average spin-up of $dot{P}_{mathrm{spin}} = -(1.27pm0.01)times10^{-12}$ s $s^{-1}$ from the only previous period measurement, obtained more than 20 years earlier. The time-averaged continuum spectrum (0.2-12 keV) consisted of a hard power-law (photon index ~0.44) with an exponential cut-off at a phase-dependent energy (20-50 keV) plus a significant soft excess below about 0.5 keV. In addition, several features were observed in the spectrum: an emission line at 6.6 keV from highly ionized iron, a broad feature at 0.9-1 keV likely due to a blend of Fe L-shell lines, and narrow emission and absorption lines consistent with transitions in highly ionized oxygen, nitrogen and iron visible in the high resolution RGS data (0.4-2.1 keV). Given the different ionization stages of the narrow line components, indicative of photoionization from the luminous X-ray pulsar, we argue that the soft excess in RX J0059.2-7138 is produced by reprocessing of the pulsar emission in the inner regions of the accretion disc.
98 - N. La Palombara 2014
X-ray observations of sdO stars are a useful tool to investigate their properties, but so far only two sdO stars were detected at X-rays. We observed a complete flux-limited sample of 19 sdO stars with the Chandra HRC-I camera to measure the count ra te of the detected sources or to set a tight upper limit on it for the undetected sources. We obtained a robust detection of BD+37 1977 and Feige 34 and a marginal detection of BD+28 4211. The estimated luminosity of BD+37 1977 is above 10^31 erg/s, which is high enough to suggest the possible presence of an accreting compact companion. This possibility is unlikely for all the other targets (both detected and undetected), since in their case L_X < 10^30 erg/s. On the other hand, for all 19 targets the estimated value of L_X (or its upper limit) implies an X-ray/bolometric flux ratio that agrees with log(L_X/L_bol) = -6.7 +/- 0.5, which is the range of values typical of main-sequence and giant O stars. Therefore, for Feige 34 and BD+28 4211 the observed X-ray flux is most probably due to intrinsic emission. The same is possibile for the 16 undetected stars.
88 - P. Esposito 2012
We report on the Swift observations of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, which has an orbital period of ~3.7 d. Our monitoring, for a total of ~43 ks, spans over three orbits and represents the most intense and com plete sampling along the orbital period of the light curve of this source. If one assumes a circular orbit, the X-ray emission from this source can be explained by accretion from a spherically symmetric clumpy wind from a blue supergiant, composed of clumps with different masses, ranging from ~5x10^16 g to 10^21g.
In October 2007 a hard X-ray burst was detected by the INTEGRAL satellite from a direction consistent with the position of AX J1818.8-1559, an X-ray source at low Galactic latitude discovered with the ASCA satellite in 1996-1999. The short duration ( 0.8 s) and soft spectrum (power law photon index of 3.0+/-0.2) of the burst in the 20-100 keV range are typical of Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars. We report on the results of an observation of AX J1818.8-1559 obtained with the Suzaku satellite in October 2011. The source spectrum, a power law with photon index 1.5, and flux 2x10^{-12} erg cm^-2 s^-1 (2-10 keV), do not show significant variations with respect to the values derived from archival data of various satellites (ROSAT, XMM-Newton, Chandra, Swift) obtained from 1993 to 2011. We discuss possible interpretations for AX J1818.8-1559 and, based on its association with the INTEGRAL burst, we propose it as a new member of the small class of magnetar candidates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا