ترغب بنشر مسار تعليمي؟ اضغط هنا

We use first principles density functional theory to investigate the softening of polar phonon modes in rutile TiO$_2$ under tensile (110)-oriented strain. We show that the system becomes unstable against a ferroelectric distortion with polarization along (110) for experimentally accessible strain values. The resulting polarization, estimated from the Born effective charges, even exceeds the bulk polarization of BaTiO$_3$. Our calculations demonstrate the different strain dependence of polar modes polarized along (110) and (001) directions, and we discuss the possibility of strain engineering the polarization direction, and the resulting dielectric and piezoelectric response, in thin films of TiO$_2$ grown on suitable substrates.
We have investigated the initial growth of Fe on GaAs(110) by means of density functional theory. In contrast to the conventionally used (001)-surface the (110)-surface does not reconstruct. Therefore, a flat interface and small diffusion can be expe cted, which makes Fe/GaAs(110) a possible candidate for spintronic applications. Since experimentally, the actual quality of the interface seems to depend on the growth conditions, e.g., on the flux rate, we simulate the effect of different flux rates by different Fe coverages of the semiconductor surface. Systems with low coverages are highly diffusive. With increasing amount of Fe, i.e., higher flux rates, a flat interface becomes more stable. The magnetic structure strongly depends on the Fe coverage but no quenching of the magnetic moments is observed in our calculations.
122 - A. Hucht , S. Buschmann , P. Entel 2007
Iron, cobalt and nickel nanoparticles, grown in the gas phase, are known to arrange in chains and bracelet-like rings due to the long-range dipolar interaction between the ferromagnetic (or super-paramagnetic) particles. We investigate the dynamics a nd thermodynamics of such magnetic dipolar nanoparticles for low densities using molecular dynamics simulations and analyze the influence of temperature and external magnetic fields on two- and three-dimensional systems. The obtained phase diagrams can be understood by using simple energetic arguments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا