ترغب بنشر مسار تعليمي؟ اضغط هنا

83 - P. Castangia 2012
We monitored the 22 GHz maser line in the lensed quasar MG J0414+0534 at z=2.64 with the 300-m Arecibo telescope for almost two years to detect possible additional maser components and to measure a potential velocity drift of the lines. The main mase r line profile is complex and can be resolved into a number of broad features with line widths of 30-160 km/s. A new maser component was tentatively detected in October 2008 at a velocity of +470 km/s. After correcting for the estimated lens magnification, we find that the H2O isotropic luminosity of the maser in MG J0414+0534 is about 26,000 solar luminosities, making this source the most luminous ever discovered. Both the main line peak and continuum flux densities are surprisingly stable throughout the period of the observations. An upper limit on the velocity drift of the main peak of the line has been estimated from our observations and is of the order of 2 km/s per year. We discuss the results of the monitoring in terms of the possible nature of the maser emission, associated with an accretion disk or a radio jet. This is the first time that such a study is performed in a water maser source at high redshift, potentially allowing us to study the parsec-scale environment around a powerful radio source at cosmological distances.
138 - P. Castangia 2011
The study of water masers at cosmological distances would allow us to investigate the parsec-scale environment around powerful radio sources, to probe the physical conditions of the molecular gas in the inner parsecs of quasars, and to estimate their nuclear engine masses in the early universe. To derive this information, the nature of the maser source, jet or disk-maser, needs to be assessed through a detailed investigation of the observational characteristics of the line emission. We monitored the maser line in the lensed quasar MGJ0414+0534 at z = 2.64 with the 300-m Arecibo telescope for ~15 months to detect possible additional maser components and to measure a potential velocity drift of the lines. In addition, we follow the maser and continuum emissions to reveal significant variations in their flux density and to determine correlation or time-lag, if any, between them. The main maser line profile is complex and can be resolved into a number of broad features with line widths of 30-160 km/s. A new maser component was tentatively detected in October 2008 that is redshifted by 470 km/s w.r.t the systemic velocity of the quasar. The line width of the main maser feature increased by a factor of two between the Effelsberg and EVLA observations reported by Impellizzeri et al. (2008) and the first epoch of the Arecibo monitoring campaign. After correcting for the lens magnification, we find that the total H2O isotropic luminosity of the maser in MGJ0414+0534 is now ~30,000 Lsun, making this source the most luminous ever discovered.[Abridged]
Water masers are found in dense molecular clouds closely associated with supermassive black holes in the centres of active galaxies. Based upon the understanding of the local water maser luminosity function, it was expected that masers at intermediat e and high redshifts would be extremely rare, but galaxies at redshifts z > 2 might be quite different from those found locally, not least because of more frequent mergers and interaction events. Using gravitational lensing as a tool to enable us to search higher redshifts than would otherwise be possible, we have embarked on a survey of lensed galaxies, looking for masers. Here we report the discovery of a water maser at redshift 2.64 in the dust- and gas-rich gravitationally lensed type 1 quasar MG J0414+0534, which, with an isotropic luminosity of 10,000 L_solar, is twice as luminous as the most powerful local water maser, and half that of the most distant maser previously known. Using the locally-determined luminosity function, the probability of finding a maser this luminous associated with any single active galaxy is 10^{-6}. The fact that we saw such a maser in the first galaxy we observed must mean that the volume densities and luminosities of masers are higher at redshift 2.64.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا